首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
考察了ZrO2、Ru或Pt助剂对Co/Al2O3催化剂结构及浆态床费托合成反应性能的影响。实验结果表明,添加ZrO2助剂可阻止或降低难还原铝酸钴的形成、促进催化剂的还原、提高Co/Al2O3催化剂对费托合成反应的催化活性、降低甲烷选择性并提高C5+烃选择性。H2-TPR表征结果表明,少量Ru或Pt助剂均能降低Co-ZrO2/Al2O3催化剂中钴物种还原温度(Co3O4→CoO和CoO→Co0),提高催化剂的还原度,催化剂呈现出良好的CO加氢反应活性。此外,催化剂组分间浸渍次序对费托合成反应性能有重要影响,载体γ-Al2O3先浸渍Zr组分,可有效抑制难还原化合物形成;Co、Ru组分共浸渍加强了Co和Ru组分密切接触程度,更利于钴物种的还原;Co、Pt组分依次浸渍更利于活性组分的均匀分布,催化剂具有最佳的费托合成反应性能。  相似文献   

2.
采用CO和NO作为探针分子,应用原位红外光谱法(in-situ FT-IR)和程序升温还原(H2-TPR)对Mo/γ-Al2O3和Co-Mo/γ-Al2O3加氢催化剂进行表征,并对催化剂进行了加氢脱硫(HDS)活性评价。实验结果表明,在Co-Mo/γ-Al2O3催化剂表面存在三个吸附位;在Mo/γ-Al2O3催化剂中加入助剂钴对钼吸附位起到显著的改性作用,并且引入新的活性中心,提高了催化剂的催化活性;随着钼含量的增加,活性中心数目逐渐增多;用CO-NO共吸附原位红外光谱研究了Co-Mo/γ-Al2O3催化剂表面活性中心的信息,证明不同的Mo中心分别吸附CO和NO,并将它们区分开来,解决了不同活性中心的光谱互相重叠的问题。  相似文献   

3.
采用共沉淀法制备了Co3V2O8催化剂,并对催化剂进行了BET、XRD、H2-TPR、XPS、和 TEM等技术表征,研究了其丙烷氧化脱氢 (ODH) 制丙烯反应的催化性能。H2-TPR和XPS实验结果表明,Co3V2O8催化剂中晶格氧可以较容易转换成可动氧物种(即未完全还原氧物种),使催化剂内各种价态的钒之间易于进行氧化还原反应并形成氧缺位,催化剂的表面含有较多未充分还原氧物种O-和V4+ 物种。催化活性结果显示,在425℃和475℃,丙烯选择性分别为49.45%和33.74%,表现了较好的催化性能。  相似文献   

4.
Ni-Fe/γ-Al2O3双金属催化剂的制备及其CO甲烷化性能研究   总被引:1,自引:0,他引:1  
采用等体积浸渍法制备了Ni-Fe/γ-Al2O3双金属催化剂和Ni/γ-Al2O3、Fe/γ-Al2O3单金属催化剂,在连续流动微反装置上考察了催化剂的CO甲烷化催化活性,采用XRD、N2物理吸附、H2-TPR、H2-TPD和TPSR等手段对催化剂进行表征。结果表明,Ni-Fe/γ-Al2O3双金属催化剂中Ni、Fe之间产生了明显的相互作用,还原后催化剂中形成Ni-Fe合金,对氢气吸附量显著增加。在CO体积分数为0.5%、空速5000h-1、常压的反应条件下,Ni-Fe/γ-Al2O3双金属催化剂表现出高的甲烷化活性,220℃时将CO完全转化为甲烷。  相似文献   

5.
采用浸渍法制备了Co-Pt-ZrO2/γ-Al2O3催化剂,对其进行了BET、XRD和TPR等表征,并在浆态床反应器上考察了焙烧温度和还原温度对催化剂费托合成反应性能的影响。结果表明,焙烧温度过高,容易造成Co物种和载体间的相互作用增强,使部分氧化钴颗粒聚集或烧结,导致催化剂的F-T合成反应活性和C5+烃选择性降低。还原温度较低时,钴物种不能充分还原,CO加氢活性低,甲烷选择性高,重质烃选择性低;还原温度过高,则可能造成活性物种的烧结,反而降低了催化剂的活性和重质烃选择性。在原料气n(H2)/n(CO)=2.0、483 K、2.4 MPa和空速3.6 L/(gcat·h)的条件下,31.08%Co~0.11%Pt~7.16%ZrO2/Al2O3催化剂在673 K焙烧。纯H2下653 K还原后,其费托性能最佳;CO转化率为27.0%,C5+的选择性为83.0%。  相似文献   

6.
研究了新型固体硫化剂硫代硫酸铵对加氢脱硫催化剂的预硫化。采用浸渍法将硫代硫酸铵负载在Mo/Al2O3模型催化剂上制备出预硫化的催化剂。通过X射线衍射、还原气氛的热重质谱联用和光电子能谱等表征手段研究了预硫化催化剂的物相、活化以及反应后催化剂的表面成分。结果表明,硫代硫酸铵中不同价态的硫在催化剂活化过程中起到不同作用,S2-硫化活性金属,S6+修饰载体,减少载体与活性金属的相互作用,促进硫化。不同S/Mo摩尔比的预硫化催化剂经原位氢气活化用于噻吩加氢脱硫反应,S/Mo摩尔比为3的预硫化催化剂显示出最好的加氢脱硫活性,预硫化催化剂比Mo/Al2O3催化剂的脱硫活性提高17%。  相似文献   

7.
用一步水热、分步水热、浸渍等方法分别制备Y-Co3O4复合氧化物,用于催化分解N2O的反应,其中,一步水热法制备的催化剂活性较高。再用一步水热法制备了不同Y/Co物质的量比的Y-Co3O4复合氧化物,在优化出的催化剂(0.03Y-Co3O4)表面浸渍K2CO3溶液,制备K改性催化剂(0.02K/0.03Y-Co3O4)。用X射线衍射(XRD)、N2物理吸附、H2程序升温还原(H2-TPR)、O2程序升温脱附(O2-TPD)、扫描电镜(SEM)、X射线光电子谱(XPS)等技术表征催化剂结构。研究发现,Co3O4和Y-Co3O4同为尖晶石结构,但Y-Co3O4的催化活性显著高于Co3O4。K改性增加了催化剂表面的活性位(Co2+),还有利于吸附氧的脱除,从而提高了催化剂活性。在无氧无水、有氧无水、有氧有水气氛中,K改性催化剂上的N2O全分解温度分别为325、350、375 ℃,催化剂活性较高。有氧有水气氛350 ℃连续反应50 h,K改性催化剂上N2O分解率保持90%以上,稳定性较高。研究发现,Y-Co3O4及K改性催化剂上N2O分解反应的Ea和lnA之间存在动力学补偿效应。  相似文献   

8.
采用工业用V2O5-WO3/TiO2催化剂,基于傅里叶原位红外光谱(FT-IR)技术考察SO2的氧化过程及烟气组分对SO2氧化行为的影响;结果表明,SO2在催化剂表面氧化主要是首先吸附在催化剂表面V2O5活性位上,占据其O原子,以SO2-3形式存在,后与催化剂表面V5+-OH发生反应,生成金属硫酸盐(VOSO4)中间产物,O2重新氧化催化氧化过程中由于被SO2夺取O原子而被还原的V2O5物种,使V4+转化为V5+,促进金属硫酸盐(VOSO4)向SO3转化;SO2与NO、NH3的竞争吸附阻碍SO2在V2O5活性点位上的氧化;在SCR中,NO的脱除与SO2的氧化是相互抑制的关系。  相似文献   

9.
通过浸渍和高温焙烧,制得表面附着CoAl2O4微晶颗粒的改性Al2O3载体,并采用等体积浸渍法制备负载型Co基催化剂。结合 N2物理吸附、XRD、H2-TPR、XPS及H2化学吸附等表征手段,研究改性载体及其负载钴基催化剂的织构特征;采用费托合成反应评价其催化性能。结果表明,Al2O3改性后,表面CoAl2O4的存在有效减少了载体与活性组分Co的相互作用,显著提高了催化剂的还原度和催化活性。载体的改性量在20%左右达到最佳值,继续增加,催化剂还原度和活性基本不再升高。载体改性促使催化剂CH4选择性有所降低,C5+选择性略有提高。  相似文献   

10.
采用尿素热缩合法制备了氮化碳(g-C3N4),经H2O2、NH3·H2O处理、浸渍法负载Fe制得改性Fe/g-C3N4,对比研究了改性前后催化剂的CO加氢性能。结合XRD、SEM、FT-IR、CO2-TPD、CO-TPD、H2-TPR、接触角测试和N2物理吸附-脱附等系列表征,探究了表面预处理对Fe/g-C3N4催化剂织构性质以及CO加氢产物分布的影响。结果表明,不同改性方法对催化剂的织构性质和CO加氢性能影响显著。尿素热缩合法制备的g-C3N4具有典型蜂窝状结构,Fe与g-C3N4相互作用较强,且高度分散;改性前后样品均呈亲水性,且H2O2、 NH3·...  相似文献   

11.
载体物化性质对锰铈催化剂NH3-SCR脱硝性能的影响   总被引:1,自引:0,他引:1  
选取TiO2、SAPO-34、Al2O3三种常用载体,通过浸渍法以Mn-Ce-O为活性组分制备了负载型MnCeOx脱硝催化剂。采用XRD、BET、H2-TPR、XPS、Py-FTIR等手段对催化剂的固相结构、比表面积、还原性能、表面元素及酸量进行表征分析。结果表明,MnCeOx/SAPO-34催化剂具有最大的比表面积(439.87 m2/g),酸量适中,还原性能最差;MnCeOx/Al2O3催化剂中Mn4+、Ce3+所占比例较高,但酸性最弱;MnCeOx/TiO2催化剂还原性能最优,表面Mn、Ce元素浓度最高,并具有大量Lewis酸性位。通过气固相催化反应装置对催化剂性能进行了NH3-SCR脱硝评价,结果表明,MnCeOx/TiO2催化剂具有较好的脱硝性能,反应温度为280 ℃时,NO转化率达100%(空速为42000 h-1);与催化剂物化性质对比分析,催化剂的氧化还原能力和Lewis酸性位对其脱硝性能至关重要。  相似文献   

12.
纳米负载型V2O5-WO3/TiO2催化剂碱中毒及再生研究   总被引:2,自引:2,他引:2  
实验制备了陶瓷颗粒为骨架的纳米级V2O5-WO3/TiO2(C)催化剂。采用浸渍法模拟碱金属中毒,研究了中毒及再生对催化剂脱硝活性的影响,运用XRD、FT-IR、H2-TPR、XPS技术表征分析了碱金属对催化剂的失活作用。实验表明,碱金属能使催化剂活性降低,钾的毒性大于钠。FT-IR结果显示,催化剂以Lewis酸作为活性酸位。H2-TPR、XPS结果表明,钾的加入降低了催化剂的氧化能力,主要影响了催化剂表面的吸附氧。采用单纯的水洗方法并不能提高催化剂活性,而酸洗再生后催化剂在较高反应温度下活性得到较好的恢复。  相似文献   

13.
CoMo/ZrO2-Al2O3催化剂的制备及其加氢脱氧性能   总被引:1,自引:0,他引:1  
以ZrOCl2·6H2O和Al2(SO4)3为原料,采用超声波共沉淀法制得一系列不同ZrO2质量分数的ZrO2- Al2O3复合氧化物载体;并以该复合氧化物为载体,采用等体积浸渍法制得Co和Mo质量分数分别为6.0%和16.0%的CoMo/ZrO2-Al2O3催化剂。BET、XRD、H2-TPR和NH3-TPD等表征结果表明,ZrO2-Al2O3复合氧化物载体具有较高的比表面积与较大的孔容、孔径,随着复合载体中ZrO2质量分数的增加,复合载体比表面积逐渐减小。ZrO2-Al2O3复合载体能高度分散活性组分,钴钼负载量接近其在载体上的单层分散阈值。相比于CoMo/Al2O3,CoMo/ZrO2-Al2O3催化剂具有较高的还原性能和较多的表面酸性活性中心,由此导致其在苯酚加氢脱氧(HDO)反应中,具有较高的加氢脱氧活性和苯选择性。
  相似文献   

14.
以水热合成法制备了K原位改性的Fe-Mn催化剂,考察了其CO加氢合成低碳烯烃催化活性。采用SEM、TEM、XRD、H2-TPR和FT-IR等手段对催化剂进行了表征。结果表明,制备的催化剂前驱体呈50~70 nm的球形颗粒,表面富含羰基和羟基,物相组成以Fe3O4为主,用于反应后有Fe5C2和MnCO3相生成。与共沉淀法制备催化剂相比,在设定的反应条件下,不同K含量改性的催化剂均具有较高的活性,以原料配比Fe:Mn:C6:K=3:1:5:0.10的催化剂性能最佳,CO转化率达95.02%,总低碳烯烃收率为62.86 g/m3(H2+CO),CH4和CO2选择性分别为13.88%和13.98%。  相似文献   

15.
采用水热法,通过改变合成条件选择性制备出具有球状堆积、薄片状、中空和海绵条状结构的四种不同形貌的H-ZSM-5分子筛,并采用XRD、SEM、Py-FTIR、NH3-TPD、ICP和N2物理吸附等手段对其结构性质进行了表征。将具有尖晶石结构的ZnCr2O4复合氧化物与不同形貌的H-ZSM-5分子筛组成ZnCr2O4/H-ZSM-5双功能催化剂,应用于合成气直接制芳烃(STA)的反应过程,研究了H-ZSM-5分子筛形貌对该双功能催化剂STA性能的影响。结果表明,H-ZSM-5分子筛形貌对ZnCr2O4/H-ZSM-5的合成气制芳烃催化性能具有重要影响;不同形貌H-ZSM-5分子筛的芳烃选择性由高到低顺序依次为球状堆积 > 海绵条状 > 中空结构 > 薄片状结构。其中,ZnCr2O4氧化物与具有球状堆积结构的H-ZSM-5分子筛组成的ZnCr2O4/H-ZSM-5(sphere)双功能催化剂在STA反应过程中表现出最佳的催化性能:在350℃和3.0 MPa条件下,CO转化率为12.6%,芳烃选择性高达68.8%,而甲烷、C2-40烷烃和CO2选择性分别降低至1.3%、14.3%和41.4%。这是由于球状堆积H-ZSM-5分子筛粒径适中(约350 nm),孔道长度适宜,适合芳烃产物的扩散但又能避免低碳烃类过早扩散出酸性分子筛孔道,从而有利于合成气转化中间产物的芳构化,提高芳烃产物的选择性。  相似文献   

16.
用水热法和共沉淀法分别制备了Nd-Co3O4催化剂,催化分解N2O。其中,水热法制备的Nd-Co3O4催化活性较高。在不同组成的Nd-Co3O4中,优化出了较高活性的0.01Nd-Co3O4催化剂,在其表面浸渍K2CO3溶液制备K改性催化剂(K/Nd-Co3O4)。用X射线衍射(XRD)、N2物理吸附、扫描电镜(SEM)、X射线光电子谱(XPS)、程序升温还原(H2-TPR)、O2程序升温脱附(O2-TPD)等技术表征催化剂结构。结果表明,Nd-Co3O4和K改性催化剂均为尖晶石结构;K改性弱化了催化剂表面Co-O键,有利于表面氧的脱除,提高了催化剂活性。有氧有水气氛350 ℃连续反应40 h,K/Nd-Co3O4催化剂上的N2O分解率超过90%,稳定性较好。  相似文献   

17.
采用溶胶凝胶法制备了一系列不同TiO2含量的TiO2-Al2O3复合载体,并通过浸渍法制备了NiO/TiO2-Al2O3催化剂。分别考察了不同TiO2含量的NiO/TiO2-Al2O3催化剂及反应温度对CO甲烷化催化性能的影响。实验结果表明,当复合载体中TiO2质量分数为30%,反应温度为350~450 ℃时,催化剂催化活性较高。利用N2吸附-脱附(BET)、X射线衍射(XRD)及H2程序升温还原(H2-TPR)等手段对催化剂物化性能进行了表征。结果表明,加入适量的TiO2能抑制镍铝尖晶石NiAl2O4物种的生成,改善NiO的表面分散性能,避免大晶粒NiO的形成,也改善了催化剂的还原性能,从而提高催化剂的CO甲烷化活性。  相似文献   

18.
采用硅胶为黏结剂,在堇青石蜂窝陶瓷上以涂覆法依次负载Cu、Mn、Ce改性的纳米TiO2粉末、W改性的V2O5粉末得到复合催化剂,在120~550 ℃用尿素选择性催化还原(Urea-SCR)氮氧化物时显示良好活性。与商业催化剂V2O5-WO3/TiO2相比,添加Cu、Mn、Ce后,催化剂脱硝活性显著提高,活性温度窗口明显拓宽。结果表明,催化剂的高活性与催化剂表面适度的酸碱性、高比值的V4+/V5+以及良好的氧化还原性能和锐钛矿相的TiO2、丰富的表面裂纹的存在等因素有关。  相似文献   

19.
采用催化加氢的方式将CO2转化为甲醇,既可以减少CO2排放,又制备了化学品,该反应具有重要的研究意义.氧化铟(In2O3)作为CO2加氢制甲醇催化剂,由于其较高的CO2活化能力和甲醇选择性,被科研工作者广泛研究.其中,将具有良好解离H2能力的过渡金属元素引入In2O3(M/In2O3)是有效提高催化剂性能的策略之一,然而,M/In2O3体系催化CO2加氢反应机理及活性位点仍不清楚.本文引入Co制备了In-Co二元金属氧化物催化剂应用于CO2加氢制甲醇,结果表明,相较于In2O3,In-Co催化剂性能有很大提升,其中In1-Co4催化剂上甲醇时空产率(9.7 mmol·gcat-1 h-1)是In2O3(2.2 mmol·gcat-1 h-1)的近5倍(反应条件:P=4.0 MPa,T=300℃,GHSV=24000 cm3 STP gcat-1 h-1,H2/CO2=3).值得注意的是,尽管Co是金属元素的主体,In-Co催化剂中Co催化CO2甲烷化的活性受到明显抑制.本文还通过多种技术系统研究了催化剂结构与反应选择性转变间的关系.采用电感耦合等离子体发射光谱、粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电子显微镜等对催化剂结构以及表面性质进行了表征.结果表明,在H2还原气氛诱导下,In-Co催化剂表面发生重构,形成以CoO为核,以In2O3为壳的核壳结构,其在高压反应后仍能保持稳定;更重要的是,该核壳结构可以显著增强In-Co催化剂吸附及活化CO2的能力.CO2加氢反应动力学研究表明,Co催化剂上H2分压对CO2加氢为零级反应,而H2分压在In-Co上的反应级数为正数;In-Co催化剂上,CO2分压的反应级数接近于零,表明CO2及其衍生物在In-Co的表面吸附饱和,但在纯Co上,则不会发生这种饱和吸附.通过原位DRIFTS研究了催化反应路径和关键中间物种的吸附及反应行为,发现CO2加氢在纯Co和In-Co上的催化机理均遵循甲酸盐路径.在该催化路径中,CO2首先加氢为甲酸盐(*HCOO)物种,随后加氢为甲氧基(*CH3O).*CH3O在Co催化剂上进一步加氢生成CH4,而*CH3O在In-Co催化剂上则会脱附生成CH3OH.根据表征结果,本文认为,在还原性气氛下,In-Co发生了重构并生成表面富In2O3的核壳状结构,显著提高了催化剂对CO2和含碳物种的吸附能力.Co和In-Co催化剂对CO2加氢反应选择性的差异归因于催化剂对CO2和对*HCOO等含碳中间物种的吸附稳定性不同.CO2及其衍生的含碳中间物种在In-Co催化剂上的吸附能力比在Co催化剂上强,形成了较合适的催化剂表面C/H比,从而使*CH3O能够脱附为CH3OH,而不是进一步加氢为CH4.综上,本文研究为高活性In-Co催化剂体系在CO2加氢反应中的催化机理及行为提供了解释,为金属-氧化铟(M-In2O3)催化剂体系的设计提供了参考.  相似文献   

20.
本研究以共沉淀法制备的α-Fe2O3催化剂为前驱体,通过调变碳化温度和碳化时间制备了不同物相组成的系列催化剂,采用XRD、M?ssbauer谱、XPS和Raman光谱等技术考察了催化剂体相和表面物相组成,在此基础上研究了不同条件下(不同CO转化率和H2O分压)催化剂的物相组成与催化剂性能之间的关系,重点探究了费托合成条件下CO2生成的活性相。结果表明,升高碳化温度和延长碳化时间有利于Fe3O4向碳化铁转变。在典型的费托合成条件下,催化剂的活性受到碳化铁含量和积炭程度的共同影响。当H2O分压较低时,动力学因素限制了水煤气变换(WGS)反应的进行,CO2选择性仅受CO转化率的影响,Fe3O4含量变化对CO2选择性无明显影响;而在较高的H2O分压下,随着催化剂中Fe3O4含量增加,CO  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号