首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2006,18(15):1505-1510
A highly sensitive, fast and stable conductometric immunosensor for determination of interleukin‐6 (IL6) in humans is developed by encapsulation of horseradish peroxidase‐labeled interleukin‐6 antibody (HRP‐anti‐IL6) in poly(amidoamine) fourth‐generation dendrimer (dendrimer) and colloidal gold (nanogold) modified composite architecture. The presences of nanogold and dendrimer provided a congenial microenvironment for the immobilized biomolecules and decreased the electron transfer impedance, leading to a direct electrochemical behavior of the immobilized HRP. The formation of the antibody‐antigen complex by a simple one‐step immunoreaction between the immobilized HRP‐anti‐IL6 and IL6 in sample solution introduced a barrier of direct electrical communication between the immobilized HRP and the gold electrode surface, thus local conductivity variations could be detected by the HRP electrocatalytic reaction in 0.02 M phosphate buffer solution (pH 7.0) containing 50 μM H2O2, 0.01 M KI and 0.15 M NaC1. Under optimal conditions, the proposed immunosensor exhibited a good conductometric response to IL6 in a linear range from 30 to 300 pg/mL with a relatively low detection limit of 10 pg/mL at 3δ. The precision and reproducibility are acceptable with the intra‐assay CV of 7.3% and 5.6% at 100 and 200 pg/mL IL6, respectively. The storage stability of the proposed immunosensor is acceptable in a pH 7.0 PBS at 4 °C for 8 days. Importantly, the proposed methodology could be extended to the detection of other antigens or biocompounds.  相似文献   

2.
Accurate detection of cancer antigen 72-4 (CA72-4), a tumor-associated glycoprotein, is of great significance for gastric cancer diagnosis and immunotherapy monitoring. Modification of noble metal nanoparticles on transition metal dichalcogenides can significantly enhance functions, such as electron transport. Molybdenum disulfide gold nanoparticles nanocomposites (MoS2-Au NPs) were prepared in this study and a series of characterization studies were carried out. In addition, a label-free, highly sensitive electrochemical immunosensor molybdenum disulfide -Au nanoparticles/Glassy carbon electrode (MoS2-Au NPs/GCE) was also prepared and used for the detection of CA72-4. The electrochemical performance of the immunosensor was characterized by electrochemical techniques, such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The results indicated that better MoS2-Au NPs nanomaterials have been synthesized, and the prepared electrochemical immunosensor, MoS2-Au NPs/GCE, showed excellent electrochemical performance. The sensor exhibited high detection sensitivity under optimal conditions, including an incubation time of 30 min, an incubation temperature of 25 °C, and a pH of 7.0. The electrochemical immunosensor also had a low detection limit of 2.0 × 10?5 U/mL (S/N = 3) in a concentration range of 0.001–200 U/mL, with good selectivity, stability, and repeatability. In conclusion, this study provided a theoretical basis for the highly sensitive detection of tumor markers in clinical biological samples.  相似文献   

3.
《Electroanalysis》2006,18(22):2194-2201
A new amperometric immunobiosensor for carcinoembryonic antigen (CEA) determination in human serum was developed via encapsulation of horseradish peroxidase‐labeled carcinoembryonic antibody (HRP‐anti‐CEA) in a gold nanoparticles/DNA composite architecture. The presences of gold nanoparticles provided a congenial microenvironment for the immobilized biomolecules and decreased the electron transfer impedance, leading to a direct electrochemical behavior of the immobilized HRP. The formation of the antibody–antigen complex by a simple one‐step immunoreaction between the immobilized HRP‐anti‐CEA and CEA in sample solution introduced a barrier of direct electrical communication between the immobilized HRP and the gold electrode surface. Under optimal conditions, the current change obtained from the labeled HRP relative to H2O2 system was proportional to the CEA concentration in two linear ranges from 0.5 to 15 ng/mL and 15 to 300 ng/mL with a detection limit of 0.1 ng/mL (at 3δ). The precision and reproducibility are acceptable with the intraassay CV of 6.3% and 4.7% at 8 and 60 ng/mL CEA, respectively. The storage stability of the proposed immunosensor is acceptable in a pH 7.0 PBS at 4 °C for 9 days. Moreover, the proposed immunosensors were used to analyze CEA in human serum specimens. Analytical results of clinical samples show the developed immunoassay has a promising alternative approach for detecting CEA in the clinical diagnosis.  相似文献   

4.
The signal amplification for analytical purposes has considerable potential in detecting trace levels of analytes for clinical, security or environmental applications. In the present report a strategy based on a sandwich type immunoassay system was designed for the detection of hepatitis B surface antigen which exploits the specific affinity interaction between streptavidin and biotin recognition systems. The method involves the specific coupling of multi-functionalized gold nanoparticles (bearing biotin and luminol molecules) to the streptavidin modified by secondary antibody. The chemiluminescent signal is produced by the gold nanoparticles in the presence of HAuCl4 as catalyst and hydrogen peroxide as oxidant. The immunosensor was able to detect hepatitis B surface antigen in the linear concentration range from 1.7 to 1920 pg mL−1 and the detection limit of 0.358 pg mL−1, at signal/noise = 3.  相似文献   

5.
《Electroanalysis》2004,16(9):757-764
Colloidal Au particles have been deposited on the gold electrode through layer‐by‐layer self‐assembly using cysteamine as cross‐linkers. Self‐assembly of colloidal Au on the gold electrode resulted in an easier attachment of antibody, larger electrode surface and ideal electrode behavior. The redox reactions of [Fe(CN)6]4?/[Fe(CN)6]3? on the gold surface were blocked due to antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.0 with various concentrations of antigen at 37 °C for 30 min. Further, an amplification strategy to use biotin conjugated antibody was introduced for improving the sensitivity of impedance measurements. Thus, the sensor based on this immobilization method exhibits a large linear dynamic range, from 5–400 μg/L for detection of Human IgG. The detection limit is about 0.5 μg/L.  相似文献   

6.
Magnetic electrochemiluminescent Fe3O4/CdSe–CdS nanoparticle/polyelectrolyte nanostructures have been synthesized and used to fabricate an electrochemiluminescence (ECL) immunosensor for the detection of carcinoembryonic antigen (CEA). CEA is a protein used as a biomarker for several cancers; particularly, to monitor response to treatment in colon and rectal cancer patients. The nanocomposites can be easily separated and firmly attached to an electrode owing to their excellent magnetic properties. This represents a promising advantage for bioassay applications. More importantly, the nanostructures exhibit intense and stable ECL emissions in neutral solution, which makes them ideal for ECL immunosensing. The 3‐aminopropyltriethoxysilane (APS) polyelectrolyte shell on the nanostructure surface not only enhances the intensity and stability of the ECL signal, but also acts as a crosslinker for immunosensor fabrication. A CEA antibody immobilized onto a nanocomposite/APS/electrode with gold nanoparticles comprises the ECL immunosensor. The principle of ECL detection for CEA is based on a change in steric hindrance after immunoreaction, which leads to a decrease in ECL intensity. A wide detection range (0.064 pg ml?1–10 ng ml?1) and low detection limit (0.032 pg ml?1) are achieved. The immunosensor is highly sensitive and selective, and exhibits excellent stability and good reproducibility. It thus has great potential for clinical protein detection. In particular, this approach uses a novel class of bifunctional nanocomposites that display both intense ECL and excellent magnetism, which renders them suitable for a large range of bioassay applications.  相似文献   

7.
《Electroanalysis》2018,30(1):31-37
The electrochemical detection of alpha‐feto protein based on novel gold nanoparticles‐ poly(propylene imine) dendrimer platform is reported. The platform was prepared by co‐electrodeposition of gold nanoparticles and generation 3 poly (propylene imine) dendrimer on a glassy carbon electrode. Each modifying step was characterised by cyclic voltammetry and electrochemical impedance spectroscopy. The electrochemical measurements showed that the platform was stable, conducting and exhibited reversible electrochemistry. Results obtained from the electrochemical impedance spectroscopy interrogation in [Fe(CN)63−/4−] redox probe showed a marked reduction in charge transfer resistance (Rct) after each modification step. The immunosensor was prepared by immobilisation of a probe anti‐alpha feto protein (AFP) on the platform for 3 hrs at 35 °C followed by blocking the surface with bovine serum albumin to minimise non‐specific binding. The prepared immunosensor was used to detect AFP over a wide concentration range from 0.005 to 500 ng/mL and detection limits of 0.0022 and 0.00185 ng/mL were obtained for SWV and EIS measurements respectively. The immunosensor gave good stability over a period of fourteen days when stored at 4 °C.  相似文献   

8.
A sensitive immunosensor for the detection of pregnancy marker, human chorionic gonadotropin hormone (hCG), was developed using the direct electrical detection of Au nanoparticles. We utilized disposable screen‐printed carbon strips (SPCSs) for the development of our immunosensor, which provided cost‐effective tests with the required antigen sample volume as small as 2 μL. After the recognition reaction between the surface‐immobilized primary antibody and hCG, the captured antigen was sandwiched with a secondary antibody that was labeled with Au nanoparticles. Au nanoparticles were exposed to a preoxidation process at 1.2 V for 40 s, which was subsequently followed with a reduction scan on the same surface using differential pulse voltammetry (DPV). We could observe Au nanoparticle‐labeled antigen‐antibody complexes immobilized on the surface of SPCS using scanning electron microscopy (SEM). Additionally, the number of Au nanoparticles on the immunosensor was determined using SEM images, and showed a linear relationship with the current intensity obtained from the DPV measurements with a detection limit of 36 pg/mL hCG (612 fM, 3.6×10?4 IU/mL). Our immunosensor system, a combination of the screen‐printing technology with Au nanoparticles provides a promising biosensor for various applications in life sciences.  相似文献   

9.
Qu B  Chu X  Shen G  Yu R 《Talanta》2008,76(4):785-790
A novel electrochemical immunosensor using functionalized silica nanoparticles (Si NPs) as protein tracer has been developed for the detection of prostate specific antigen (PSA) in human serum. The immunosensor was carried out based on a heterogeneous sandwich procedure. The PSA capture antibody was immobilized on the gold electrode via glutaraldehyde crosslink. After reaction with the antigen in human serum, Si NPs colabeled with detection antibody and alkaline phosphatase (ALP) was sandwiched to form the immunocomplex on the gold electrode. ALP carried by Si NPs convert nonelectroactive substrate into the reducing agent and the latter, in turn, reduce metal ions to form electroactive metallic product on the electrode. Linear sweep voltammetry (LSV) was used to quantify the amount of the deposited silver and give the analytical signal for PSA. The parameters including the concentration of the ALP used to functionalize the Si NPs and the enzyme catalytic reaction time have been studied in detail and optimized. Under the optimum conditions of immunoreaction and electrochemical detection, the electrochemical immunosensor was able to realize a reliable determination of PSA in the range of 1–35 ng/mL with a detection limit of 0.76 ng/mL. For six human serum samples, the results performed with the electrochemical immunosensor were in good agreement with those obtained by chemiluminescent microparticle immunoassay (CMIA), indicating that the electrochemical immunosensor could satisfy the need of practical sample detection.  相似文献   

10.
The excellent direct electron transfer (DET) of enzyme labeled to antibody immobilized in designer organically modified silicate (ormosil) sol–gel was achieved at an electrode, which was used to construct a novel reagentless immunosensor for antigen determination. The synthesized ormosil architecture provided a hydrophilic interface for retaining the activity of immobilized enzyme labeled immunocomponent. The proposed immunosensor for carcinoembryonic antigen (CEA) prepared by immobilizing horseradish peroxidase-labeled CEA antibody (HRP-anti-CEA) in the architecture showed a surface-controlled electrode process attributed to the DET between electrode and HRP with a rate constant of 5.94 ± 0.40 s−1. The formation of immunocomplex upon incubation in CEA or sample solution led to block of DET and linearly decrease in voltammetric response over CEA concentration ranging from 0.5 to 3.0 and 3.0 to 120 ng ml−1. The limit of detection for CEA was 0.4 ng ml−1. The immunosensor showed good accuracy and acceptable storage stability, precision and reproducibility. The proposed method was simple, low-cost and potentially attractive for clinical immunoassays.  相似文献   

11.
A novel electrochemiluminescence (ECL) sandwich-type immunosensor for human immunoglobulin G (hIgG) on a gold nanoparticle modified electrode was developed by using N-(aminobutyl)-N-ethylisoluminol (ABEI) labeling. The primary antibody, goat-anti-human IgG was first immobilized on a gold nanoparticle modified electrode, then the antigen (human IgG) and the ABEI-labeled second antibody was conjugated successively to form a sandwich-type immunocomplex. ECL was carried out with a double-step potential in carbonate buffer solution (CBS) containing 1.5 mM H2O2. The ECL intensity increased linearly with the concentration of hIgG over the range 5.0-100 ng/mL. The limit of detection was 1.68 ng/mL (S/N = 3). The relative standard deviation was 3.79% at 60 ng/mL (n = 9). The present immunosensor is simple and sensitive. It has been successfully applied to the detection of hIgG in human serums.  相似文献   

12.
Epidemiological studies have demonstrated an association between the risk of cardiovascular events and increasing C-reactive protein (CRP) concentration. This paper reports the development of an immunosensor for the assessment of the cardiovascular process using anti-C-reactive protein antibody immobilized onto a gold-printed screen electrode. Positive and negative human sera were successfully evaluated using electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and atomic force microscopy (AFM). EIS results show that, after the incubation with positive serum for myocardial infarction, the resistance increased about two times in relation to the negative serum. A linear range from 6.25 to 50 μg mL?1 and detection limit of 0.78 μg mL?1 using DPV were obtained. The immunosensor developed for the CRP detection using gold electrode revealed efficacy and a potential use for the diagnosis and monitoring of the progression of cardiovascular diseases.  相似文献   

13.
We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng?·?mL-1 concentration range, with a detection limit of 1.8 pg?·?mL-1.
Figure
The Fe3O4@C@CNC was prepared and applied in a CEA immunosensor with the help of a flow-injection photoluminescence system.  相似文献   

14.
An electrochemical impedance immunosensor has been developed for the specific detection of immunological interaction between human mammary tumor associated glycoprotein and its monoclonal antibody (GP1D8). Antibody proteins were immobilized by spontaneous adsorption of antibody on gold. Consequently, electrochemical impedance spectroscopy (EIS) measurements of a gold electrode coated with the antibody showed changes in a.c. current response after the addition of the specific antigen. The successful immunological reaction between the immobilized antibody–antigen at the electrode surface could be monitored.  相似文献   

15.
《Analytical letters》2012,45(10):1230-1241
In this study, anti-carbofuran monoclonal antibodies (Ab) were immobilized onto a gold electrode surface modified with multilayers of L-cysteine and gold colloidal nanoparticles (GNPs). Furthermore, horseradish peroxidase (HRP) as enzyme membrane was used for blocking unspecific sites and amplifying signal. The conformational properties of the immunosensor were characterized using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The concentration of antibody solution, pH of working buffer and incubation time were studied in detail for optimization of analytical performance. Under optimal conditions, the variation of current response was proportional to the concentration of carbofuran which ranged from 0.01 ng/mL to 50 ng/mL with a correlation coefficient of 0.9912. The detection limit was 0.01 ng/mL (S/N = 3). The proposed immunosensor exhibited good reproducibility and stability and it can be used for the rapid detection of carbofuran pesticide.  相似文献   

16.
《Analytical letters》2012,45(17):2893-2904
Abstract

An amperometric immunosensor for phytohormone abscisic acid was developed based on in situ chemical reductive growth of gold nanoparticles on glassy carbon electrode. First, an approximate 10 nm gold layer was sputtered uniformly onto the electrode surface, and then gold nanoparticles were grown directly on the gold layer for antibody adsorption by immersing the electrode into the H2AuCl4 solution. Determination was based on an enzyme-linked competitive immunoreaction between free and enzyme-labeled abscisic acid to bind on immobilized antibody on electrode. The linear response was from 10 ng/ml to 10 µg/ml with a detection limit of 5 ng/ml.  相似文献   

17.
A novel potentiometric immunosensor for detection of hepatitis B surface antigen (HBsAg) has been developed by means of self-assembly (SA) and opposite-charged adsorption (OCA) techniques to immobilize hepatitis B surface antibody (HBsAb) on a platinum electrode. A cleaned platinum electrode was first pretreated in the presence of 10% HNO3 and 2.5% K2CrO4 solution and held at -1.5 V (vs SCE) for 1 min to make it negatively charged and then immersed in a mixing solution containing hepatitis B surface antibody, colloidal gold (Au), and polyvinyl butyral (PVB). Finally, HBsAb was successfully immobilized onto the surface of the negatively charged platinum electrode modified nanosized gold and PVB sol-gel matrixes. The modified procedure was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized hepatitis B surface antibody exhibited direct electrochemical behavior toward hepatitis B surface antigen (HBsAg). The performance and factors influencing the performance of the resulting immunosensor were studied in detail. More than 95.7% of the results of the human serum samples obtained by this method were in agreement with those obtained by enzyme-linked immunosorbent assays (ELISAs). The resulting immunosensor exhibited fast potentiometric response (<3 min) to HBsAg. The detection limit of the immunosensor was 2.3 ng.mL(-1), and the linear range was from 8 to 1280 ng.mL(-1). Moreover, the studied immunosensor exhibited high sensitivity, good reproducibility, and long-term stability (>6 months).  相似文献   

18.
A flow-injection electrochemical immunoassay system based on a disposable immunosensor for the determination of interleukin-6 (IL-6) was proposed. The immunosensor was prepared by entrapping horseradish peroxidase (HRP)-labeled IL-6 antibody into gold nanoparticles-modified composite membrane at a screen-printed graphite electrode. With a non-competitive immunoassay format, the immunosensor was inserted in the flow system with an injection of sample, and the injected sample containing IL-6 antigen was produced transparent immunoaffinity reaction with the immobilized HRP-labeled IL-6 antibody. The formed antigen–antibody complex inhibited partly the active center of HRP, and decreased the immobilized HRP to H2O2 reduction. The performance and factors influencing the performance of the immunosensor were investigated. Under optimal conditions, the current change obtained from the labeled HRP relative to thionine–H2O2 system was proportional to the IL-6 concentration in the range of 5–100 ng L−1 with a detection limit of 1.0 ng L−1 (at 3δ). The flow-injection immunoassay system could automatically control the incubation, washing and measurement steps with acceptable reproducibility and good stability. Moreover, the proposed immunosensors were used to analyze IL-6 in human serum specimens. Analytical results of clinical samples show the developed immunoassay has a promising alternative approach for detecting IL-6 in the clinical diagnosis.  相似文献   

19.
结合纳米金及混合自组装技术, 制备了一种新型网状混合膜, 提出了一种新的生物分子固定化方法, 研制了一种用于检测人血清抗精子抗体的压电免疫传感器. 首先, 将纳米金溶胶、巯基丙酸和1,6-二巯基己烷按一定的比例混合制得网状混合自组装膜, 然后将此膜组装到压电石英晶振的金电极表面, 经EDC/NHS活化后, 再将抗原固定到电极上, 实现对抗精子抗体的检测. 结果表明, 该方法能明显提高抗体抗原结合效率, 从而提高传感器的灵敏度, 并降低传感界面的非特异性吸附. 将此传感器应用于人血清抗精子抗体的检测, 线性范围为10~800 mU/mL, 检出限为7 mU/mL. 此传感器为抗精子抗体的临床检测提供了新平台.  相似文献   

20.
The application of gold nanoparticle-based electrochemical immunoassays have been extensively studied for the detection of hepatitis B surface antigen (HBsAg), but most often they exhibit low sensitivity. We describe the fabrication of a new electrochemical immunoassay for signal amplification of the antigen-antibody reaction combined with the nanogold-based bio-barcode technique. Hepatitis B surface antibody (HBsAb) was initially immobilized on a nanogold/thionine/DNA-modified gold electrode, and then a sandwich-type immunoassay format was employed for the detection of HBsAg using nanogold-codified horseradish peroxidase-HBsAb conjugates as secondary antibodies. Under optimal conditions, the current response of the sandwich-type immunocomplex relative to the H2O2 system was proportional to HBsAg concentration in the range from 0.5 to 650 ng·mL?1 with a detection limit of 0.1 ng·mL?1 (S/N?=?3). The precision, reproducibility and stability of the immunosensor were acceptable. Subsequently, the immunosensors were used to assay HBsAg in human serum specimens. Analytical results were in agreement with those obtained by the standard chemiluminescence enzyme-linked immunosorbent assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号