首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy-Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón-Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón-Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators.  相似文献   

2.
The energy of a graph G is equal to the sum of the absolute values of the eigenvalues of G, which in turn is equal to the sum of the singular values of the adjacency matrix of G. Let X, Y, and Z be matrices, such that X+Y=Z. The Ky Fan theorem establishes an inequality between the sum of the singular values of Z and the sum of the sum of the singular values of X and Y. This theorem is applied in the theory of graph energy, resulting in several new inequalities, as well as new proofs of some earlier known inequalities.  相似文献   

3.
We investigate the singular Weyl-Titchmarsh m-function of perturbed spherical Schrödinger operators (also known as Bessel operators) under the assumption that the perturbation q(x) satisfies xq(x)∈L1(0,1). We show existence plus detailed properties of a fundamental system of solutions which are entire with respect to the energy parameter. Based on this we show that the singular m-function belongs to the generalized Nevanlinna class and connect our results with the theory of super singular perturbations.  相似文献   

4.
Calderón-Zygmund singular integral operators have been extensively studied for almost half a century. This paper provides a context for and proof of the following result: If a Calderón-Zygmund convolution singular integral operator is bounded on the Hardy space H1 (Rn), then the homogeneous of degree zero kernel is in the Hardy space H1(Sn–1) on the sphere.  相似文献   

5.
We investigate the large-time behavior of classical solutions to the thin-film type equation ut=−x(uuxxx). It was shown in previous work of Carrillo and Toscani that for non-negative initial data u0 that belongs to H1(R) and also has a finite mass and second moment, the strong solutions relax in the L1(R) norm at an explicit rate to the unique self-similar source type solution with the same mass. The equation itself is gradient flow for an energy functional that controls the H1(R) norm, and so it is natural to expect that one should also have convergence in this norm. Carrillo and Toscani raised this question, but their methods, using a different Lyapunov functions that arises in the theory of the porous medium equation, do not directly address this since their Lyapunov functional does not involve derivatives of u. Here we show that the solutions do indeed converge in the H1(R) norm at an explicit, but slow, rate. The key to establishing this convergence is an asymptotic equipartition of the excess energy. Roughly speaking, the energy functional whose dissipation drives the evolution through gradient flow consists of two parts: one involving derivatives of u, and one that does not. We show that these must decay at related rates—due to the asymptotic equipartition—and then use the results of Carrillo and Toscani to control the rate for the part that does not depend on derivatives. From this, one gets a rate on the dissipation for all of the excess energy.  相似文献   

6.
The Cahn–Hilliard–Hele–Shaw system is a fundamental diffuse-interface model for an incompressible binary fluid confined in a Hele–Shaw cell. It consists of a convective Cahn–Hilliard equation in which the velocity u is subject to a Korteweg force through Darcy's equation. In this paper, we aim to investigate the system with a physically relevant potential (i.e., of logarithmic type). This choice ensures that the (relative) concentration difference φ takes values within the admissible range. To the best of our knowledge, essentially all the available contributions in the literature are concerned with a regular approximation of the singular potential. Here we first prove the existence of a global weak solution with finite energy that satisfies an energy dissipative property. Then, in dimension two, we further obtain the uniqueness and regularity of global weak solutions. In particular, we show that any two-dimensional weak solution satisfies the so-called strict separation property, namely, if φ is not a pure state at some initial time, then it stays instantaneously away from the pure states. When the spatial dimension is three, we prove the existence of a unique global strong solution, provided that the initial datum is regular enough and sufficiently close to any local minimizer of the free energy. This also yields the local Lyapunov stability of the local minimizer itself. Finally, we prove that under suitable assumptions any global solution converges to a single equilibrium as time goes to infinity.  相似文献   

7.
We consider an elliptic partial differential equation with input function inH -1. We assume that the type of singular part of solution is known and the solution is expressed as a sum of regular and singular term. We use a cut-off function to isolate the singular part and pose a variational problem to find the regular part of the solution. Then we have the solution by adding the regular solution and singular part. Error analysis and some example with computation will be given.  相似文献   

8.
For fixed magnetic quantum number m results on spectral properties and scattering theory are given for the three-dimensional Schrödinger operator with a constant magnetic field and an axisymmetrical electric potential V. In various, mostly singular settings, asymptotic expansions for the resolvent of the Hamiltonian H m+Hom+V are deduced as the spectral parameter tends to the lowest Landau threshold. Furthermore, scattering theory for the pair (H m, H om) is established and asymptotic expansions of the scattering matrix are derived as the energy parameter tends to the lowest Landau threshold.  相似文献   

9.
We prove the global existence of the so-called H2 solutions for a nonlinear wave equation with a nonlinear dissipative term and a derivative type nonlinear perturbation. To show the boundedness of the second order derivatives we need a precise energy decay estimate and for this we employ a ‘loan’ method.  相似文献   

10.
The asymptotic behavior of solutions of the three-dimensional Navier-Stokes equations is considered on bounded smooth domains with no-slip boundary conditions and on periodic domains. Asymptotic regularity conditions are presented to ensure that the convergence of a Leray-Hopf weak solution to its weak ω-limit set (weak in the sense of the weak topology of the space H of square-integrable divergence-free velocity fields with the appropriate boundary conditions) are achieved also in the strong topology. It is proved that the weak ω-limit set is strongly compact and strongly attracts the corresponding solution if and only if all the solutions in the weak ω-limit set are continuous in the strong topology of H. Corresponding results for the strong convergence towards the weak global attractor of Foias and Temam are also presented. In this case, it is proved that the weak global attractor is strongly compact and strongly attracts the weak solutions, uniformly with respect to uniformly bounded sets of weak solutions, if and only if all the global weak solutions in the weak global attractor are strongly continuous in H.  相似文献   

11.
The concepts of the first type of distributional chaos in the Tan-Xiong sense (Abbrev. DC1 in the Tan-Xiong sense), the second type of strong-distributional chaos (Abbrev. strong DC2) and the third type of strong-distributional chaos (Abbrev. strong DC3) were introduced by Tan et al. [F. Tan, J. Xiong. Chaos via Furstenberg family couple, Topology Appl. (2008), doi:10.1016/j.topol.2008.08.006] for continuous maps of a metric space. However, it turns out that, for continuous maps of a compact metric space, the three mutually nonequivalent versions of distributional chaos can be discussed. Let X be a compact metric space and f:XX a continuous map. In this paper, we show that for any integer N>0, f is strong DC2 (resp. strong DC3) if and only if fN is strong DC2 (resp. strong DC3). We also show that the above three versions of distributional chaos are topological conjugacy invariant. In addition, as an application, we present an example.  相似文献   

12.
This paper addresses the problem of robust finite-time stabilization of singular stochastic systems via static output feedback. Firstly, sufficient conditions of singular stochastic finite-time boundedness on static output feedback are obtained for the family of singular stochastic systems with parametric uncertainties and time-varying norm-bounded disturbance. Then the results are extended to singular stochastic H finite-time boundedness for the class of singular stochastic systems. Designed algorithm for static output feedback controller is provided to guarantee that the underlying closed-loop singular stochastic system is singular stochastic H finite-time boundedness in terms of strict linear matrix equalities with a fixed parameter. Finally, an illustrative example is presented to show the validity of the developed methodology.  相似文献   

13.
We show that the Hardy-Littlewood maximal operator and a class of Calderón-Zygmund singular integrals satisfy the strong type modular inequality in variable Lp spaces if and only if the variable exponent p(x) ∼ const. Received: 15 September 2004  相似文献   

14.
The GKN (Glazman, Krein, Naimark) Theorem characterizes all self-adjoint realizations of linear symmetric (formally self-adjoint) ordinary differential equations in terms of maximal domain functions. These functions depend on the coefficients and this dependence is implicit and complicated. In the regular case an explicit characterization in terms of two-point boundary conditions can be given. In the singular case when the deficiency index d is maximal the GKN characterization can be made more explicit by replacing the maximal domain functions by a solution basis for any real or complex value of the spectral parameter λ. In the much more difficult intermediate cases, not all solutions contribute to the singular self-adjoint conditions. In 1986 Sun found a representation of the self-adjoint singular conditions in terms of certain solutions for nonreal values of λ. In this paper we give a representation in terms of certain solutions for real λ. This leads to a classification of solutions as limit-point (LP) or limit-circle (LC) in analogy with the celebrated Weyl classification in the second-order case. The LC solutions contribute to the singular boundary conditions, the LP solutions do not. The advantage of using real λ is not only because it is, in general, easier to find explicit solutions but, more importantly, it yields information about the spectrum.  相似文献   

15.
We consider the hyperbolic-parabolic singular perturbation problem for a degenerate quasilinear Kirchhoff equation with weak dissipation. This means that the coefficient of the dissipative term tends to zero when t→+∞.We prove that the hyperbolic problem has a unique global solution for suitable values of the parameters. We also prove that the solution decays to zero, as t→+∞, with the same rate of the solution of the limit problem of parabolic type.  相似文献   

16.
In this paper the vanishing Debye length limit of the bipolar time-dependent drift-diffusion-Poisson equations modelling insulated semiconductor devices with p-n junctions (i.e., with a fixed bipolar background charge) is studied. For sign-changing and smooth doping profile with ‘good’ boundary conditions the quasineutral limit (zero-Debye-length limit) is performed rigorously by using the multiple scaling asymptotic expansions of a singular perturbation analysis and the carefully performed classical energy methods. The key point in the proof is to introduce a ‘density’ transform and two λ-weighted Liapunov-type functionals first, and then to establish the entropy production integration inequality, which yields the uniform estimate with respect to the scaled Debye length. The basic point of the idea involved here is to control strong nonlinear oscillation by the interaction between the entropy and the entropy dissipation.  相似文献   

17.
We develop a generalized Littlewood-Paley theory for semigroups acting on Lp-spaces of functions with values in uniformly convex or smooth Banach spaces. We characterize, in the vector-valued setting, the validity of the one-sided inequalities concerning the generalized Littlewood-Paley-Stein g-function associated with a subordinated Poisson symmetric diffusion semigroup by the martingale cotype and type properties of the underlying Banach space. We show that in the case of the usual Poisson semigroup and the Poisson semigroup subordinated to the Ornstein-Uhlenbeck semigroup on Rn, this general theory becomes more satisfactory (and easier to be handled) in virtue of the theory of vector-valued Calderón-Zygmund singular integral operators.  相似文献   

18.
The numerical approximation by a lower order anisotropic nonconforming finite element on appropriately graded meshes are considered for solving singular perturbation problems. The quasi-optimal order error estimates are proved in the ε-weighted H1-norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. By using the interpolation postprocessing technique, the global superconvergent error estimates in ε-weighted H1-norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.  相似文献   

19.
We study in this paper the asymptotic behaviour of the weak solutions of the three-dimensional Navier-Stokes equations. On the one hand, using the weak topology of the usual phase space H (of square integrable divergence free functions) we prove the existence of a weak attractor in both autonomous and nonautonomous cases. On the other, we obtain a conditional result about the existence of the strong attractor, which is valid under an unproved hypothesis. Also, with this hypothesis we obtain continuous weak solutions with respect to the strong topology of H.  相似文献   

20.
The solution of a class of nonlinear singular integro-differential equations with Carleman shift is obtained in the space Hμ(n)(Γ). The approach followed depends essentially on solution of linear singular integro-differential equation with shift. A criterion for the Noetherity of a correspondence singular integral functional operator of second order with Carleman shift preserving orientation is obtained and the index formula is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号