首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interplay of protein dynamics and molecular recognition is of fundamental importance in biological processes. Atomic‐resolution insights into these phenomena may provide new opportunities for drug discovery. Herein, we have combined NMR relaxation experiments and residual dipolar coupling (RDC) measurements with molecular dynamics (MD) simulations to study the effects of the anti‐inflammatory drug carbenoxolone (CBNX) on the conformational properties and on the internal dynamics of a subdomain (box A) of high‐mobility group B protein (HMGB1). 15N relaxation data show that CBNX binding enhances the fast pico‐ to nanosecond motions of a loop and partially removes the internal motional anisotropy of the first two helices of box A. Dipolar wave analysis of amide RDC data shows that ligand binding induces helical distortions. In parallel, increased mobility of the loop upon ligand binding is highlighted by the essential dynamics analysis (EDA) of MD simulations. Moreover, simulations detect two possible orientations for CBNX, which induces two possible conformations of helix H3, one being similar to the free form and the second one causing a partial helical distortion. Finally, we introduce a new approach for the analysis of the internal coordination of protein residues that is consistent with experimental data and allows us to pinpoint which substructures of box A are dynamically affected by CBNX. The observations reported here may be useful for understanding the role of protein dynamics in binding at atomic resolution.  相似文献   

2.
Molecular motions of free and pheromone-bound mouse major urinary protein I, previously investigated by NMR relaxation, were simulated in 30 ns molecular dynamics (MD) runs. The backbone flexibility was described in terms of order parameters and correlation times, commonly used in the NMR relaxation analysis. Special attention was paid to the effect of conformational changes on the nanosecond time scale. Time-dependent order parameters were determined in order to separate motions occurring on different time scales. As an alternative approach, slow conformational changes were identified from the backbone torsion angle variances, and "conformationally filtered" order parameters were calculated for well-defined conformation states. A comparison of the data obtained for the free and pheromone-bound protein showed that some residues are more rigid in the bound form, but a larger portion of the protein becomes more flexible upon the pheromone binding. This finding is in general agreement with the NMR results. The higher flexibility observed on the fast (fs-ps) time scale was typically observed for the residues exhibiting higher conformational freedom on the ns time scale. An inspection of the hydrogen bond network provided a structural explanation for the flexibility differences between the free and pheromone-bound proteins in the simulations.  相似文献   

3.
Calreticulin (CRT) is localized to and has functions in multiple cellular compartments, including the cell surface, the endoplasmic reticulum, and the extracellular matrix. Mutagenesis studies have identified several residues on a concave β-sheet surface of CRT critical for CRT binding to carbohydrate and other proteins/peptides. How the mutations of these key residues in CRT affect the conformation and dynamics of CRT, further influencing CRT binding to carbohydrates and other proteins to signal the important biological activities remain unknown. In this study, we investigated the effect of three key point mutations (C105A, C137A and W319A) on CRT conformation and dynamics via atomistic molecular dynamics simulations. Results show that these three key residues mutations induced the changes of CRT local backbone flexibility and secondary structure of CRT N-domain, which could further affect CRT’s binding activity. C137A mutation led to dramatic decrease of the overall size of CRT due to the P-domain fold back to the globular domain and formed new inter-domain contacts, which can cause blockage of CRT’s binding with other large substrates. Furthermore, for CRT concave β-strand surface patch containing lectin binding site, CRT C105A, C137A and W319A point mutation resulted in the changes in solvent accessible surface area, key residues’ side chain atom positions and dynamical correlated motions between residues. All these changes could directly affect CRT binding behavior. Results of this study provide molecular and structural insights into understanding the role of key residues of CRT in its binding behavior.  相似文献   

4.
We present (1)H NMR chemical shift calculations of liquid water based on first principles molecular dynamics simulations under periodic boundary conditions. We focus on the impact of computational parameters on the structural and spectroscopic data, which is an important question for understanding how sensitive the computed (1)H NMR resonances are upon variation of the simulation setup. In particular, we discuss the influence of the exchange-correlation functional and the size of the basis set, the choice for the fictitious electronic mass and the use of pseudopotentials for the nuclear magnetic resonance (NMR) calculation on one hand and the underlying Car-Parrinello-type molecular dynamics simulations on the other hand. Our findings show that the direct effect of these parameters on (1)H shifts is not big, whereas the indirect dependence via the structural data is more important. The (1)H NMR chemical shifts clearly reflect the induced structural changes, illustrating once again the sensitivity of (1)H NMR observables on small changes in the local chemical structure of complex hydrogen-bonded liquids.  相似文献   

5.
The role of protein dynamics in the control of substrate recognition, catalysis, and protein–protein interactions is often underestimated. Recently, a number of studies have examined the contribution of protein dynamics to the thermodynamics of ligand binding in detail, mostly using NMR relaxation measurements and molecular dynamics (MD) simulations. The results unequivocally demonstrate that conformational dynamics play a pivotal role in the properties and functions of proteins, and ignoring this contribution is likely to lead to substantial errors when explaining the biological function of proteins and in predictions of the binding affinities of their cognate ligands. However, the details of the interplay between structure and dynamics and the way it affects the biological function of the target protein remain poorly understood. In this study, the changes in fast (picosecond-to-nanosecond time scale) dynamics of catalytic domains of four human cytosine DNA methyltransferases (DNMTs) were studied using molecular dynamics (MD) simulations. The results provide insight into the protein dynamics changes that occur upon binding of the cofactor, S-adenosylmethionine (SAM). Contrary to expectations, increased amplitude of motions of backbone amide (N–H) and terminal heavy atom (C–C) bond vectors was observed in all studied DNMTs upon binding of SAM. These results imply that the cofactor binding causes a global increase in the extent of protein dynamics in the short time scale. This global dynamic change constitutes a favourable entropic contribution to the free energy of SAM binding. These results suggest that cytosine DNA methyltransferases may exploit changes in their fast scale dynamics to reduce the entropic cost of the substrate binding.  相似文献   

6.
The dynamical and conformational behaviour of a flexible tetrabenzocyclododecatetraene derivative exhibiting a columnar mesophase has been studied by a combination of deuteron solid state NMR spectroscopy and molecular dynamics (MD) simulations. As shown by two-dimensional (2D) exchange NMR, the mesophase is characterized by slow axial reorientations (∼10-3s) of single molecular units where the phenylene rings exhibit a well-defined quasi-fourfold potential, while the 2D spectra of the core methylene sites are sensitive to the molecular conformation and reorientation mechanism. Motional narrowing of one-dimensional (1D) spectra reveals additional fast librations due to the internal flexibility of the mesogenic moiety. The various reorientation pathways comprising interconversions and pseudo-rotations between different energetically stable conformations are elucidated on a microscopic level by molecular dynamics simulations. The mesophase dynamics is ascribed to a complex axial motion involving rotational jumps combined with a pseudo-rotation between two symmetry related sofa forms. This is confirmed quantitatively by comparing the experimental 2D NMR spectra of the core methylene sites and the simulations which are based on the molecular geometries obtained by MD simulations. The lineshapes of one- and two-dimensional spectra of magnetically aligned samples specific to the orientation behaviour of the sofa conformer are discussed.  相似文献   

7.
Brinker is the key target protein of the Drosophila Decapentaplegic morphogen signalling pathway. Brinker is widely expressed and can bind with DNA. NMR spectra suggest that apo-Brinker is intrinsically unstructured and undergoes a folding transition upon DNA-binding. However, the coupled mechanism of binding and folding is poorly understood. Here, we performed molecular dynamics (MD) simulations for both bound and apo-Brinker to study the mechanism. Room-temperature MD simulations suggest that Brinker becomes more rigid and stable upon DNA-binding. Kinetic analysis of high-temperature MD simulations shows that both bound and apo-Brinker unfold via a two-state process. The time scale of tertiary unfolding is significantly different between bound and apo-Brinker. The predicted Φ-values suggest that there are more residues with native-like transition state ensembles (TSEs) for bound Brinker than for apo-Brinker. The average RMSD differences between bound and apo-Brinker and Kolmogorov-Smirnov (KS) test analysis illustrate that Brinker folding upon DNA-binding might obey induced-fit mechanism based on MD simulations. These methods can be used for the research of other biomolecular folding upon ligand-binding.  相似文献   

8.
Methyl groups are powerful reporters of structure, motion, and function in NMR studies of supramolecular protein assemblies. Their utility can be hindered, however, by spectral overlap, difficulties with assignment or lack of probes in biologically important regions of the molecule studied. Here we show that (13)CH(3)-S- labeling of Cys side chains using (13)C-methyl-methanethiosulfonate ((13)C-MMTS) (IUPAC name: methylsulfonylsulfanylmethane) provides a convenient probe of molecular structure and dynamics. The methodology is demonstrated with an application focusing on the gating residues of the Thermoplasma acidophilum proteasome, where it is shown that the (13)CH(3)-S- label reports faithfully on the conformational heterogeneity and dynamics in this region of the complex. A second and related application involves labeling with (13)C-MMTS at the N-termini of the subunits comprising the E. coli ClpP protease that reveals multiple conformations of gating residues in this complex as well. These N-terminal residues adopt a single conformation upon gate opening.  相似文献   

9.
Human immunodeficiency virus type-1 integrase (HIV-1 IN) is an essential enzyme for effective viral replication. Diketo acids such as L-731,988 and S-1360 are potent and selective inhibitors of HIV-1 IN. In this study, we used molecular dynamics simulations, within the hybrid quantum mechanics/molecular mechanics (QM/MM) approach, to determine the protein-ligand interaction energy between HIV-1 IN and L-731,988 and 10 of its derivatives and analogues. This hybrid methodology has the advantage that it includes quantum effects such as ligand polarisation upon binding, which can be very important when highly polarisable groups are embedded in anisotropic environments, as for example in metal-containing active sites. Furthermore, an energy decomposition analysis was performed to determine the contributions of individual residues to the enzyme-inhibitor interactions on averaged structures obtained from rather extensive conformational sampling. Analysis of the results reveals first that there is a correlation between protein-ligand interaction energy and experimental strand transfer into human chromosomes and secondly that the Asn-155, Lys-156 and Lys-159 residues and the Mg(2+) ion are crucial to anti-HIV IN activity. These results may explain the available experimental data.  相似文献   

10.
CXCL-8 (Interleukin 8) is a CXC chemokine with a central role in the human immune response. We have undertaken extensive in silico analyses to elucidate the interactions of CXCL-8 with its various binding partners, which are crucial for its biological function. Sequence and structure analyses showed that residues in the thirdq β-sheet and basic residues in the heparin binding site are highly variable, while residues in the second β-sheet are highly conserved. Molecular dynamics simulations in aqueous solution of dimeric CXCL-8 have been performed with starting geometries from both X-ray and NMR structures showed shearing movements between the two antiparallel C-terminal helices. Dynamic conservation analyses of these simulations agreed with experimental data indicating that structural differences between the two structures at quaternary level arise from changes in the secondary structure of the N-terminal loop, the 3(10)-helix, the 30s, 40s, and 50s loops and the third β-sheet, resulting in a different interhelical separation. Nevertheless, the observation of these different states indicates that CXCL-8 has the potential to undergo conformational changes, and it seems likely that this feature is relevant to the mode of binding of glycosaminoglycan (GAG) mimetics such as cyclitols. Simulations of the receptor peptide fragment-CXCL-8 complex identified several specific interactions of the receptor peptide with CXCL-8 that could be exploited in the structure-based design of competitive peptides and nonpeptidic molecules targeting CXCL-8 for combating inflammatory diseases. Simulations of the CXCL-8 dimer complexed with a 24-mer heparin fragment and of the CXCL-8-receptor peptide complex revealed that Arg60, Lys64, and Arg68 in the dimer bind to cyclitols in a horseshoe pattern, defining a region which is spatially distinct from the receptor binding site. There appears to be an optimum number of sulfates and an optimum length of alkyl spacers required for the interaction of cyclitol inhibitors with the dimeric form of CXCL-8. Calculation of the binding affinities of cyclitol inhibitors reflected satisfactorily the ranking of experimentally determined inhibitory potencies. The findings of these molecular modeling studies will help in the search for inhibitors which can modulate various CXCL-8 biological activities and serve as an excellent model system to study CXC-inhibitor interactions.  相似文献   

11.
Motions of an alpha-cyclodextrin (alpha-CD) molecule on a dodecyl chain adopting the all-trans conformation were investigated in the presence of water by molecular dynamics simulations with CVFF force fields, where the trimethylammonium group of dodecyltrimethylammonium bromide (DTAB) is protruded outside the secondary hydroxyl rim of alpha-CD (the secondary-in structure). The alpha-CD molecule shuttled rapidly on the chain without decomplexation. This rapid motion is consistent with the NMR data. The plane formed by 6 O4 atoms of alpha-CD is most populated between the C6 and C7 atoms of DTAB. This structure is very close to that estimated by NMR. The alpha-CD molecule underwent a restricted rotation in a range of 60 degrees with regard to the plane of the dodecyl chain: this plane at the most population is middle between the two diagonal lines of the normal hexagon formed by 6 O4 atoms of alpha-CD. The published NMR data were reanalyzed in terms of the rotation angle, and a slightly better structure was obtained. The distortion of the alpha-CD cavity from the normal hexagon was decreased upon complex formation with DTAB. The deviation of the center of alpha-CD from the center of the dodecyl chain predicted by molecular dynamics simulations is consistent with the NMR data. The secondary-in structure is energetically more stable than the primary-in structure, as calculated by molecular mechanics with CVFF and Amber force fields. This result is consistent with the NMR data. Molecular dynamics simulations were also carried out for the primary-in structure. Some of the results are close to those of the secondary-in structure.  相似文献   

12.
13.
The conformational preference of a [2]rotaxane system has been examined by molecular dynamics simulations. The rotaxane wheel consists of two bridged binding components: a cis-dibenzo-18-crown-6 ether and a 1,3-phenyldicarboxamide, and the penetrating axle consists of a central isophthaloyl unit with phenyltrityl capping groups. The influence of solvation on the co-conformation of the [2]rotaxane was evaluated by comparing the conformational flexibility in two solvents: chloroform and dimethyl sulfoxide. Attention was also paid to the effect of cation binding on the dynamical properties of the [2]rotaxane. The conformational stability of the [2]rotaxane was calculated using a MM/PB-SA strategy, and the occurrence of specific motions was examined by essential dynamics analysis. The changes in the co-conformational properties in the two solvents and upon cation binding are discussed in light of the available NMR data. The results indicate that in chloroform solution the [2]rotaxane system exists as a mixture of co-conformational states including some that have hydrogen bonds between axle C=O and wheel NH groups. Analysis of the simulations allow us to hypothesize that the [2]rotaxane's circumrotation motion can occur as the result of a dynamic process that combines a preliminary axle sliding step that breaks these hydrogen bonds and a conformational change in the ester group more distant from the wheel. In contrast, no hydrogen-bonded co-conformation was found in dimethyl sulfoxide, which appears to be due to the preferential formation of hydrogen bonds between the wheel NH groups with solvent molecules. Moreover, the axle experiences notable changes in anisotropic shielding, which would explain why the NMR signals are broadened in this solvent. Insertion of a sodium cation into the crown ether reduces co-conformational flexibility due to an interaction of the axle with the cation. Overall, the results reveal how both solvent and ionic atmosphere can influence the co-conformational preferences of rotaxanes.  相似文献   

14.
The interaction of human galectin-1 with a variety of oligosaccharides, from di-(N-acetyllactosamine) to tetra-saccharides (blood B type-II antigen) has been scrutinized by using a combined approach of different NMR experiments, molecular dynamics (MD) simulations, and isothermal titration calorimetry. Ligand- and receptor-based NMR experiments assisted by computational methods allowed proposing three-dimensional structures for the different complexes, which explained the lack of enthalpy gain when increasing the chemical complexity of the glycan. Interestingly, and independently of the glycan ligand, the entropy term does not oppose the binding event, a rather unusual feature for protein-sugar interactions. CLEANEX-PM and relaxation dispersion experiments revealed that sugar binding affected residues far from the binding site and described significant changes in the dynamics of the protein. In particular, motions in the microsecond-millisecond timescale in residues at the protein dimer interface were identified in the presence of high affinity ligands. The dynamic process was further explored by extensive MD simulations, which provided additional support for the existence of allostery in glycan recognition by human galectin-1.  相似文献   

15.
Detailed understanding of protein–ligand interactions is crucial to the design of more effective drugs. This is particularly true when targets are protein interfaces which have flexible, shallow binding sites that exhibit substantial structural rearrangement upon ligand binding. In this study, we use molecular dynamics simulations and free energy calculations to explore the role of ligand-induced conformational changes in modulating the activity of three generations of Bcl-XL inhibitors. We show that the improvement in the binding affinity of each successive ligand design is directly related to a unique and measurable reduction in local flexibility of specific regions of the binding groove, accompanied by the corresponding changes in the secondary structure of the protein. Dynamic analysis of ligand–protein interactions reveals that the latter evolve with each new design consistent with the observed increase in protein stability, and correlate well with the measured binding affinities. Moreover, our free energy calculations predict binding affinities which are in qualitative agreement with experiment, and indicate that hydrogen bonding to Asn100 could play a prominent role in stabilizing the bound conformations of latter generation ligands, which has not been recognized previously. Overall our results suggest that molecular dynamics simulations provide important information on the dynamics of ligand–protein interactions that can be useful in guiding the design of small-molecule inhibitors of protein interfaces. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
An investigation has been performed to assess how aqueous dynamical simulations of flexible molecules can be compared against NMR data. The methodology compares state-of-the-art NMR data (residual dipolar coupling, NOESY, and (13)C relaxation) to molecular dynamics simulations in water over several nanoseconds. In contrast to many previous applications of residual dipolar coupling in structure investigations of biomolecules, the approach described here uses molecular dynamics simulations to provide a dynamic representation of the molecule. A mannose pentasaccharide, alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->2)-D-Manp, was chosen as the model compound for this study. The presence of alpha-linked mannan is common to many glycopeptides, and therefore an understanding of the structure and the dynamics of this molecule is of both chemical and biological importance. This paper sets out to address the following questions. (1) Are the single structures which have been used to interpret residual dipolar couplings a useful representation of this molecule? (2) If dynamic flexibility is included in a representation of the molecule, can relaxation and residual dipolar coupling data then be simultaneously satisfied? (3) Do aqueous molecular dynamics simulations provide a reasonable representation of the dynamics present in the molecule and its interaction with water? In summary, two aqueous molecular dynamics simulations, each of 20 ns, were computed. They were started from two distant conformations and both converged to one flexible ensemble. The measured residual dipolar couplings were in agreement with predictions made by averaging the whole ensemble and from a specific single structure selected from the ensemble. However, the inclusion of internal motion was necessary to rationalize the relaxation data. Therefore, it is proposed that although residual dipolar couplings can be interpreted as a single-structure, this may not be a correct interpretation of molecular conformation in light of other experimental data. Second, the methodology described here shows that the ensembles from aqueous molecular dynamics can be effectively tested against experimental data sets. In the simulation, significant conformational motion was observed at each of the linkages, and no evidence for intramolecular hydrogen bonds at either alpha(1-->2) or alpha(1-->3) linkages was found. This is in contrast to simulations of other linkages, such as beta(1-->4), which are often predicted to maintain intramolecular hydrogen bonds and are coincidentally predicted to have less conformational freedom in solution.  相似文献   

17.
The human macrophage galactose-type lectin (MGL), expressed on macrophages and dendritic cells (DCs), modulates distinct immune cell responses by recognizing N-acetylgalactosamine (GalNAc) containing structures present on pathogens, self-glycoproteins, and tumor cells. Herein, NMR spectroscopy and molecular dynamics (MD) simulations were used to investigate the structural preferences of MGL against different GalNAc-containing structures derived from the blood group A antigen, the Forssman antigen, and the GM2 glycolipid. NMR spectroscopic analysis of the MGL carbohydrate recognition domain (MGL-CRD, C181-H316) in the absence and presence of methyl α-GalNAc (α-MeGalNAc), a simple monosaccharide, shows that the MGL-CRD is highly dynamic and its structure is strongly altered upon ligand binding. This plasticity of the MGL-CRD structure explains the ability of MGL to accommodate different GalNAc-containing molecules. However, key differences are observed in the recognition process depending on whether the GalNAc is part of the blood group A antigen, the Forssman antigen, or GM2-derived structures. These results are in accordance with molecular dynamics simulations that suggest the existence of a distinct MGL binding mechanism depending on the context of GalNAc moiety presentation. These results afford new perspectives for the rational design of GalNAc modifications that fine tune MGL immune responses in distinct biological contexts, especially in malignancy.  相似文献   

18.
Structural, dynamical, and vibrational properties of complexes made of metal cobalt(III) coordinated to different amounts of cysteine molecules were investigated with DFT-based Car-Parrinello molecular dynamics (CPMD) simulations in liquid water solution. The systems are composed of Co(III):3Cys and Co(III):2Cys immersed in liquid water which are modeled by about 110 explicit water molecules, thus one of the biggest molecular systems studied with ab initio molecular simulations so far. In such a way, we were able to investigate structural and dynamical properties of a model of a typical metal binding site used by several proteins. Cobalt, mainly a toxicological agent, can replace the natural binding metal and thus modify the biochemical activity. The structure of the surrounding solvent around the metal-ligands complexes is reported in detail, as well as the metal-ligands coordination bonds, using radial distribution functions and electronic analyses with Mayer bond orders. Structures of the Cocysteine complexes are found in very good agreement with EXAFS experimental data, stressing the importance of considering the surrounding solvent in the modeling. A vibrational analysis is also conducted and compared to experiment, which strengthens the reliability of the solvent interactions with the Cocysteine complexes from our molecular dynamics simulations, as well as the dynamics of the systems. From this preliminary analysis, we could suggest a vibrational fingerprint able to distinguish Co(III):2Cys from Co(III):3Cys. Our simulations also show the importance of considering a quantum explicit solvent, as solute-to-solvent proton transfer events have been observed.  相似文献   

19.
The interaction of glycyl-phenylalanyl-glycine (GFG) with bilayers formed by cesium perfluorooctanoate (CsPFO) in water was investigated in the isotropic phase by means of 1H NMR and molecular dynamics (MD) simulations. Details on the preferential location of the different residues of GFG were obtained from selective variations of chemical shift with peptide concentration and of line width in the presence of the paramagnetic ion Mn2+. The analysis of 1H NMR spectra recorded at different concentrations and temperatures allowed the association constant and the enthalpy change upon binding to be evaluated. MD simulations highlighted the hydrogen bonds formed between the different GFG functional groups and the micelle. Both NMR and MD gave indications of high affinity of GFG with the micelle, with the N-terminal residue anchoring on the surface via hydrogen bonds with the micelle COO(-) groups.  相似文献   

20.
A study of the minor-groove recognition of A/T-rich DNA sites by Ni(II).L-Arg-Gly-His and Ni(II).D-Arg-Gly-His was carried out with a fluorescence-based binding assay, one- and two-dimensional (1D and 2D) NMR methodologies, and molecular simulations. Fluorescence displacement titrations revealed that Ni(II).L-Arg-Gly-His binds to A/T-rich sequences better than the D-Arg diastereomer, while NMR investigations revealed that both metallopeptides bind to the minor groove of an AATT core region as evidenced by an intermolecular nuclear Overhauser effect (NOE) between each metallopeptide His imidazole C4 proton and the C2 proton of adenine. Results from molecular dynamics simulations of these systems were consistent with the experimental data and indicated that the His imidazole N-H, the N-terminal peptide amine, and Arg side chains of each metallopeptide are major determinants of minor-groove recognition by functioning as H-bond donors to the O2 of thymine residues or N3 of adenine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号