首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon nanowires grown epitaxially via the vapor–liquid–solid mechanism show a larger diameter at the base of the nanowire, which cannot be explained by an overgrowth of the nanowire alone. By considering the equilibrium condition for the contact angle of the droplet, the Neumann quadrilateral relation, a quasi-static model of epitaxial nanowire growth is derived. It is found that a change of the contact angle of the droplet is responsible for the larger diameter of the nanowire base, so that the expansion has to be considered a fundamental aspect of epitaxial vapor–liquid–solid growth. By comparison of experimental results with theoretical calculations, an estimate for the line tension is obtained. In addition, the growth model predicts the existence of two different growth modes. Only within a certain range of line-tension values is the mode corresponding to ordinary nanowire growth realized, whereas nanowire growth stops at a relatively small height if the line tension exceeds an upper boundary. An approximate analytic expression for the upper boundary as a function of the surface tensions is given. PACS 68.65.-k; 61.46.+w; 81.10.Bk  相似文献   

2.
R. S. Yang 《哲学杂志》2013,93(14-15):2097-2104
This paper reports on ZnO nanowires arrays synthesized using Sn as a catalyst. The Sn particles were produced from the reduction of SnO2 powders via a vapour-solid growth process. Control of growth conditions led to the formation of ZnO nanowire arrays, radial nanowire ‘flowers’ and uniaxial fuzzy nanowires. ZnO nanowire–nanobelt junctions were also grown by changing the growth direction. As-grown nanowire arrays could be fundamental materials for investigating physical and chemical properties at nano-scale dimensions.  相似文献   

3.
We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin and dextran, with interfacial tensions around 10 microN/m. The equilibrium nature of the capillary forces is attributed to the combination of a low interfacial tension and a microscopic confinement geometry, based on nucleation and growth arguments.  相似文献   

4.
Low temperature growth and dimension dependent photoluminescence (PL) efficiency of semiconductor nanowires were investigated with CdS as a model system. The CdS nanowires were prepared with a simple, low temperature metal-organic chemical vapor deposition (MOCVD) process via the vapor–liquid–solid (VLS) mechanism. The low growth temperature of 360 °C was made possible with a newly developed single-source precursor of CdS and by using sputtered Au as the catalyst for the VLS growth. The length and diameter of the nanowires were adjusted by reaction time and sputtering conditions of Au, respectively. Nanowires of up to several μm in length and 20 to 200 nm in diameter were obtained. The PL quantum yield of the nanowires was found to decrease with increasing wire length, but to increase with decreasing wire diameter. This dimension-dependent PL efficiency of one-dimensional nanostructure, unlikely resulting from the quantum size confinement effect, appears to be a new observation that carries application significance. PACS 74.25.Gz; 78.55.Et; 78.67.Lt  相似文献   

5.
Equilibrium model of bimodal distributions of epitaxial island growth   总被引:1,自引:0,他引:1  
We present a nanostructure diagram for use in designing heteroepitaxial systems of quantum dots. The nanostructure diagram is computed using a new equilibrium statistical physics model and predicts the island size and shape distributions for a range of combinations of growth temperature and amount of deposited material. The model is applied to Ge on Si(001), the archetype for bimodal island growth, and the results compare well with data from atomic force microscopy of Ge/Si islands grown by chemical vapor deposition.  相似文献   

6.
徐小花  陈明文  王自东 《物理学报》2018,67(11):118103-118103
研究各向异性表面张力对定向凝固中共晶生长形态稳定性的影响.应用多重变量展开法导出了共晶界面表达式和扰动振幅的变化率满足的色散关系.结果表明,共晶生长系统有两种整体不稳定性机理:由非震荡导致的"交换稳定性"机理和由震荡导致的"整体波动不稳定性"机理.震荡有四种典型模式,即:反对称-反对称(AA-),对称-反对称(SA-)、反对称-对称(AS-)和对称-对称(SS-)模式.稳定性分析表明:共晶界面形态稳定性取决于Peclet数ε的某一个临界值ε_*,当ε大于临界值ε_*时,共晶界面形态不稳定;当ε小于临界值ε_*时,共晶界面形态稳定.随着各向异性表面张力增大,对应于AA-,SA-和SS-模式的临界值ε_(aa*),ε_(sa*)和ε_(ss*)随之减小,表明各向异性表面张力减小这三种模式的稳定性区域;然而,随着各向异性表面张力增大,对应于AS-模式的临界值ε_(as*)随之增大,表明各向异性表面张力增大AS-模式的稳定性区域.  相似文献   

7.
One-dimensional (1D) tungsten oxide nanostructures show great potential for applications in the areas of batteries, photoelectrochemical water-splitting, electrochromic devices, catalysts and gas sensors. 1D tungsten oxide nanostructures are currently synthesized by physical or chemical vapor deposition, which are limited by low temperatures, the need for vacuum conditions, frequently expensive catalysts, and difficulty in scaling up for mass-production. These limitations, however, can be overcome by flame synthesis. Here, using a co-flow multi-element diffusion burner, we demonstrate the atmospheric, catalyst-free, rapid, mild and scalable flame synthesis of diverse, quasi-aligned, large density, and crystalline tungsten oxide nanostructures on a variety of substrates. Specifically, under fuel-rich conditions, monoclinic 1D W18O49 nanowires and nanotubes were grown on tungsten, iron, steel and fluorinated tin oxide (FTO) substrates, with controlled diameters ranging from 10 to 400 nm and axial growth rates ranging from 2 to 60 μm/h. Monoclinic 1D WO3 nanowires and nanotubes were grown, instead, on silicon and silicon dioxide substrates. Under fuel-lean conditions, diverse WO3 nanostructures, including monoclinic 1D nanowires, cubic 2D nanobelts and monoclinic 3D nanocones were grown on tungsten and FTO substrates. The success of this versatile flame synthesis method is attributed to the large tunability of several synthesis parameters, including the flame stoichiometry, the tungsten source and growth substrate temperatures, the tungsten oxide vapor concentration, and the material of the growth substrate. This flame synthesis method can be extended to synthesize other 1D transition metal oxides as well, enabling many large-scale electronic and energy conversion applications.  相似文献   

8.
The impact of silver metallization and electron irradiation on the physical and mechanical properties of polyimide films has been studied. The metal that impregnated the structure of the polyimide substrate was 1–5 μm. The surface coatings contained 80–97% of the relative silver mirror in the visible and infrared regions. Irradiation was performed at the ELU-6 linear accelerator with an average beam electron energy of 2 MeV, an integral current of up to 1000 μA, a pulse repetition rate of 200 Hz, and a pulse duration of 5 μs. The absorbed dose in the samples was 10, 20, 30, and 40 MGy. The samples were deformed at room temperature under uniaxial tension on an Instron 5982 universal testing system. The structural changes in the composite materials that result from the impact of the physical factors were studied using an X-ray diffractometer DRON-2M in air at 293 K using CuKα radiation (λαCu = 1.5418 Å). A substantial growth of mechanical characteristics resulting from the film metallization, as compared to the pure film, was observed. The growth of the ultimate strength by Δσ = 105 MPa and the plasticity by Δε = 75% is connected with the characteristics of the change of structure of the metallized films and the chemical etching conditions. The electron irradiation of the metallized polyimide film worsens its elastic and strength characteristics due to the formation of new phases in the form of silver oxide in the coating. The concentration of these phases increased with increasing dose, which was also the result of the violation of the ordered material structure, namely, the rupture of polyimide macromolecule bonds and the formation of new phases of silver in the coating. A mathematical model was obtained that predicts the elastic properties of silver metallized polyimide films. This model agrees with the experimental data.  相似文献   

9.
A new formulation of thermodynamics for special and general relativistic rotating perfect fluids is developed. Both isolated systems and portions of isolated systems electrically uncharged or charged are treated. Exploiting the symmetry of motion of stationary axisymmetric fluids, the global thermodynamic functions, including total energy and spin, are defined as free scalars, represented by hypersurface integrals of conserved vectors. Local equilibrium parameters such as local temperature and chemical potential are scalar functions. There also exist global equilibrium parameters, global temperature and global chemical potential, which are free scalars. The connection between local and global conditions of thermodynamic equilibrium is made clear and explicit. Thermodynamic potentials are introduced in the context of treating open systems in a relativistically invariant way.  相似文献   

10.
Bulk bismuth is an efficient thermoelectric material. Assuming intrinsic conditions, the theory of quantum confinement of bismuth nanowires by Hicks and Dresselhaus predicts a semimetal-to-semiconductor transformation for critical diameters of around 50 nm. For nanowires of diameters below the critical diameter, electronic states can be considered to be one dimensional and therefore the thermopower can be very large. However, angle-resolved photoemission spectroscopy (ARPES) studies of Bi planar surfaces present direct evidence of heavy mass surface states that can inhibit the semimetal-to-semiconductor transformation. We present a study of the Fermi surface of Bi nanowires of diameters ranging between 200 and 30 nm employing the Shubnikov–de Haas method. Our results can be understood in terms of the model of surface states. For 30 nm nanowires we find that the Fermi surface is spherical, that the carriers have high effective mass, and that the number of carriers corresponds to that inferred from ARPES measurements.  相似文献   

11.
In this paper, we report that amorphous silicon oxide nanowires can be grown in a large quantity by chemical vapor deposition with molten gallium as the catalyst in a flow of mixture of SiH4, H2 and N2 at 600 °C. Meanwhile, when we grow these nanowires under the same conditions but without H2, octopus-like silicon oxide nanostructures are obtained. The reasons and mechanisms for the growth of these nanowires and nanostructures are discussed. Blue light emission is observed from SiOx nanowires, which can be attributed to defect centers of high oxygen deficiency. These SiOx nanowires may find applications in nanodevices and reinforcing composites.  相似文献   

12.
A theoretical model for the growth of single-wall carbon nanotubes produced by metal-catalyzed decomposition of hydrocarbons and fullerenes is presented. The growth process is treated as a thermodynamic equilibrium between carbon in the gas phase and carbon in the nanotube. The minimum possible nanotube diameters based on several published experimental conditions are calculated by combining the free energy of the reaction with an equation derived from elastic theory. The model predicts the possibility of generating nanotubes with extremely small diameters that are smaller than in the corresponding experiments. Received: 18 July 2001 / Accepted: 19 November 2001 / Published online: 4 March 2002  相似文献   

13.
Fe1-x Co x nanowires are obtained by electrochemical deposition into the pores of track-etched membranes. The characteristics of the growth process that allow controlling the length and aspect ratio of the nanowires are established. The elemental composition and magnetic properties of the nanowires depend on the diameter of the track-etched pores, which varies from 30 to 200 nm, and the electrochemical potential U (650–850 mV), which determines the nanowire growth rate. According to the results of elemental analysis and the Mössbauer spectroscopy data, the Co content in Fe1-x Co x lies in the range of x=0.20?0.25. It is found that the orientation of the magnetic moment of Fe–Co nanoparticles in the wires depends both on the track pore size d and on the nanowire growth rate. Thus, the magnetic moments in nanowires grown in 50-nm-diameter pores are oriented within 0°–40° with respect to the nanowire axis. The magnetic properties of the nanowires are explained in the framework of a theoretical model describing the magnetic dynamics of nanocomposites, which was extended to include the relaxation of the magnetization vector and to take into account interaction between the particles. The key physical parameters important for the technological applications of the nanowires are determined, their dependence on the nanowire growth conditions is traced, and the possibility of controlling them is established.  相似文献   

14.
Single crystalline ZnSe nanowires with both zincblende and wurtzite structures have been synthesized via a chemical vapour deposition method under different growth conditions. The nanowires are usually 50-80nm in diameter, and several tens of microns in length. Room-temperature photoluminescence spectra from zincblende and wurtzite ZnSe nanowires show a broad luminescence band peaked at around 2. 71 e V and a deep level emission band peaked at around 2.00 eV, respectively. Effects of post-growth annealing on the photoluminescence of these nanowires have been investigated. Strong room-temperature band-edge emission could be obtained from the annealed zincblende ZnSe nanowires.  相似文献   

15.
Silicon nanowires were synthesized using chemical vapor deposition catalyzed by gold nanoparticles deposited on silicon substrates. Silicon nanowires grew epitaxially in 111 directions on (100)-oriented silicon substrates. For a particular set of process parameters, we observed a critical thickness of the nucleating gold film, below which nanowires could not be grown. We studied the dependence of the Au-Si alloy droplet size and size distribution on the starting gold film thickness and the annealing conditions. Increasing the Cl:Si ratio in the gas phase allowed nanowires to grow on smaller Au-Si alloy droplets. We used a modified heating sequence that deconvoluted the effect of silicon substrate consumption and gas-phase silicon supply on the Au-Si alloy formation and allowed growth of nanowires with diameters less than 20 nm. The modified heating sequence was also used to demonstrate the growth of bridging silicon nanowires with diameters less than 20 nm, which is a significant step in producing electronic devices. PACS 81.07.b; 81.15.Gh  相似文献   

16.
Ultralong Cd(OH)2 nanowires were fabricated in high yield by a convenient chemical method using alkali medium at room temperature without using any templates. The preparation conditions induce a unilateral growth of nanowires, despite the absence of any template. The length of the nanowires reached several hundreds of micrometers, giving an aspect ratio of a few thousands. The X-ray diffraction shows that the Cd(OH)2 nanostructures crystallized in the wurtzite structure without any special orientation. The photoluminescence spectrum of Cd(OH)2 nanostructures appears as two emission bands: one related to green emission at 475–510 nm, and the other related to deep level emission at 510–540 nm. Also the formation mechanisms of the nanowires are presented. The growth mechanism involves the irreversible and specifically oriented self-assembly of primary nanocrystals and results in the formation of the nanowires.  相似文献   

17.
黄睿  朱静  于荣 《中国物理 B》2009,18(7):3024-3030
Tungsten oxide nanowires of diameters ranging from 7 to 200~nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour--solid (VS) mechanism. Tin powders are used to control oxygen concentration in the furnace, thereby assisting the growth of the tungsten oxide nanowires. The grown tungsten oxide nanowires are determined to be of crystalline W18O49. I--V curves are measured by an \textit{in situ} transmission electron microscope (TEM) to investigate the electrical properties of the nanowires. All of the I--V curves observed are symmetric, which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I--V curves by using a metal--semiconductor--metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires, such as the carrier concentration, the carrier mobility and the conductivity.  相似文献   

18.
The deformation mechanisms of gold nanowires with different nanopores under tension were simulated by molecular dynamics (MD). The stress–strain curves varied from different porous defects, and the tension caused dislocations to take place and slip along plane (1 1 1). Moreover, the tensile strength of the nanoporous monocrystalline gold was decreased when the simulated temperature increased. The stress concentrations factors of porous nanowires were calculated, and it was found that there was a great influence of size and model effects on the stress concentration factors.  相似文献   

19.
A time-of-flight mass spectrometer was coupled directly to an open tube vapor growth system. The vapor composition and the processes occurring during the deposition of In(1?x)GaxP alloys were studied. It was found that the vapor species present in this system are InCl, GaCl, HCl, PH3, P2, P4 and H2. The deviations from the chemical equilibrium in the system were determined and measured.A chemical equilibrium model was set and used to calculate the equilibrium partial pressures of all species under a wide range of experimental conditions. These calculations were used to predict successfully the proper conditions for growth of desired In(1?x)GaxP alloys.  相似文献   

20.
We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method. Before the nanowire growth, the graphene films were prepared on copper foils using hot-wall chemical vapor deposition and transferred onto SiO2/Si substrates. Then, for catalyst-assisted VLS growth, Ni catalyst layers with thickness of a few nanometers were deposited on the graphene-coated substrates using a thermal evaporator. We investigated the effect of the Ni catalyst thickness on the formation of GaN nanowires. Furthermore, the structural and optical characteristics of GaN nanowires were investigated using X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The GaN nanowires grown on graphene films were transferred onto polymer substrates using a simple lift-off method for applications as flexible photocatalysts. Photocatalysis activities of the GaN nanowires prepared on the flexible polymer substrates were investigated under bending conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号