首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
In this work, the reduced graphene oxide functionalized with poly dimethyl diallyl ammonium chloride (PDDA) modified palladium nanoparticles (PDDA‐rGO/Pd) had been facile synthesized and used as the sensing layer for sensitive determination of capsaicin. The prepared composite was characterized by transmission electron microscopy, UV‐visible absorption spectroscopy. The image demonstrated that Pd nanoparticles were uniformly distributed on the graphene surface. The electrochemical properties of the prepared sensor were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the nanocomposite exhibits attractive electrocatalytic activity towards the oxidation of capsaicin. This attributed to the synergistic action of the excellent properties of Pd nanoparticles and graphene nanosheets. Under optimized conditions, the electrochemical sensor possessed a dynamic linear range from 0.32 μM to 64 μM with a detection limit of 0.10 μM (S/N=3) for capsaicin detection. Moreover, the cost‐effective and simple fabrication procedure, good reproducibility and stability as well as acceptable accuracy for capsaicin determination in actual samples are also the main advantages of this method, which might have broad application in other amide alkaloid detection.  相似文献   

2.
研究使用电化学沉积法在丝网印刷碳电极表面制备了还原氧化石墨烯和金纳米颗粒,构建了一种用于新冠病毒检测的石墨烯电化学传感器。通过扫描电子显微镜(SEM)和相应的电化学方法对纳米复合材料在电极表面的成功修饰进行了表征分析。并采用差分脉冲伏安法对传感器的性能进行检测,实验构建的电化学传感器具有良好的灵敏度,该传感器检线性范围为10-10-10-6mol/L,具有良好的重复性和特异性。  相似文献   

3.
Three-dimensional copper hydroxide nanosupercages and electrochemically reduced graphene oxide were used to modify the glassy carbon electrode for the selective determination of hydrogen peroxide. The morphology and electrochemistry properties of copper hydroxide nanosupercage/electrochemically reduced graphene oxide/glassy carbon electrode were characterized using transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, Raman spectra, cyclic voltammetry, and electrochemical impedance spectroscopy. The resulting copper hydroxide nanosupercage/electrochemically reduced graphene oxide/glassy carbon electrode showed favorable performance for the electrocatalytic reduction of hydrogen peroxide. The amperometric current–time curve of the electrochemical sensor exhibited a wide linear range from 0.5 to 1030?µM with a limit of detection of 0.23?µM at a signal-to-noise ratio of three. Moreover, the sensor provided favorable selectivity, reproducibility, and stability and was used for the determination of H2O2 in tap water.  相似文献   

4.
Over the past years, the development of electrochemical sensing platforms for the sensitive detection of drug molecules have received great interests. In this research study, we introduced cauliflower‐like platinum particles decorated reduced graphene oxide modified glassy carbon electrode (Pt?RGO/GCE) as an electrochemical sensing platform for highly sensitive determination of acetaminophen (ACTM). The sensor was prepared via a simple and environmentally friendly two‐step electrodeposition method at room temperature. The combination of conductive RGO nanosheets and unique structured Pt particles (average 232 nm in diameter) provided an efficient interface with large effective surface area which greatly facilitated the electron transfer of ACTM. The experimental conditions that might affect the drug detection were studied in detail and optimized for best performance. The Pt?RGO/GCE was able to detect ACTM up to the limit of 2.2 nM with a linear concentration range from 0.01 to 350 μM. With its high reproducibility, excellent stability and selectivity, the as‐fabricated sensor was successfully applied to the ACTM content measurement in commercial tablets.  相似文献   

5.
陶瑜  顾恺  邵正中 《高分子学报》2021,(2):158-165,I0003
利用丝蛋白能够在还原氧化石墨烯片层上发生选择性聚集的特性,制备了还原氧化石墨烯片层上富集有丝蛋白微纤且分散性良好的还原氧化石墨烯片和丝蛋白混合溶液,并通过冷冻以及低温乙醇处理的方法得到一系列不同比例的还原氧化石墨烯/丝蛋白基多孔复合材料.随后,采用溶液浸泡的方法在多孔材料表面再次沉积还原氧化石墨烯,以进一步提高还原氧化石墨烯/丝蛋白基多孔复合材料的压敏导电性.系统观察和测试结果表明,还原氧化石墨烯的引入,不仅使得多孔材料内部出现了相应的微纳结构,同时也提高了多孔材料的力学性能.还原氧化石墨烯/丝蛋白基多孔复合材料在完全湿态下兼具较好的强度和弹性,可以在0%~80%的压缩应变之间实现良好的压缩回复效果和压力传感性能.其中,最佳比例下的还原氧化石墨烯/丝蛋白基多孔复合材料在低压力下的灵敏度可达0.15 kPa?1,在0~17.3 kPa范围内能够高效工作并且具有优异的电学稳定性和耐疲劳性.因此,还原氧化石墨烯/丝蛋白基多孔复合材料因其高灵敏度、宽工作范围、结构可调以及可塑性好等诸多优点,有望在柔性压力传感方面获得较好的应用.  相似文献   

6.
制备了一种二氧化锆/还原氧化石墨烯(ZrO2NPs/rGO)复合材料修饰电极的亚硝酸盐电化学传感器,并成功用于亚硝酸盐的检测.采用循环伏安法和电流-时间曲线考察了修饰电极的电化学行为.实验结果表明,ZrO2NPs/rGO复合材料修饰电极对亚硝酸盐具有良好的电流响应.在最优实验条件下,电流-时间曲线中的电流响应信号与亚硝酸盐浓度在3.0×10Symbolm@@_7~1.0×10Symbolm@@_6 mol/L和1.0×10Symbolm@@_6~6.0×10Symbolm@@_6 mol/L的范围内呈良好的线性关系,检测限为1.0×10Symbolm@@_7 mol/L(S/N 3).该传感器灵敏性高、稳定性和重现性好.使用此传感器检测实际样品香肠中的亚硝酸盐的回收率为93.7%~110.4%,相对标准偏差为1.6%~2.1%.  相似文献   

7.
In the present study, we report the simultaneous electrochemical determination of hydroquinone (HQ), catechol (CC) and resorcinol (RC) at gold nanoparticles (Au‐NPs) decorated reduced graphene oxide (RGO) modified electrode. An enhanced and well defined peak current response with a better peak separation of HQ, CC and RC is observed at RGO/Au‐NPs composite than that of RGO and Au‐NPs modified electrodes. The fabricated modified electrode shows a wide linear response in the concentration range of 3–90 µM, 3–300 µM and 15–150 µM for HQ, CC and RC, respectively. The detection limit of HQ, CC and RC is found as 0.15 µM, 0.12 µM and 0.78 µM, respectively.  相似文献   

8.
A facile, fast, and convenient route was suggested for the fabrication of Prussian blue nano particles (PBNPs) assembled on reduced graphene oxide (RGO) modified glassy carbon electrode (PBNPs|RGO|GCE). RGO was electrodeposited on the surface of GCE and the prepared RGO|GCE was immersed into a ferric‐hexacyanoferrate(III) solution and PBNPs were assembled on the RGO|GCE for a certain period of time. The PBNPs film thickness can be easily controlled by adjusting the assembling duration. The developed PBNPs|RGO|GCE was successfully used for determining hydrogen peroxide, with a linear response over the concentration range 0.5‐400 μM, a good accuracy and precision, detection limit 0.44 μM, and sensitivity 1168 mA M?1 cm?2.  相似文献   

9.
组装高能量密度的非对称超级电容器需要使用比电容大、 体积变化小且循环稳定性好的电极材料. 过渡金属硫化物(TMSs)与纳米碳材料的复合物是此类电极材料之一. 采用水热法合成了由Cu-Mo硫化物在微波剥离的还原氧化石墨烯表面生长的复合材料(CuS-MoS2/MErGO). 此复合材料在电流密度为2 A/g时具有高达861.5 F/g的比电容和良好的循环稳定性. 将1.6 V的电池电压施加在由NiS/MErGO为正极, CuS-MoS2/MErGO为负极组装成的不对称超级电容器上时, 该电容器的功率密度为1.28 kW/kg, 且能量密度保持为54.2 W·h·kg-1. 结果表明, TMS复合材料是一种很有前途的高性能电化学储能材料, 尤其是用于非对称超级电容器的组装.  相似文献   

10.
11.
12.
《Electroanalysis》2017,29(2):602-608
Pt−Au nanoclusters decorated on the surface of reduced graphene oxide (rGO/Pt−Au) was facilely prepared by one‐pot electrochemical reduction. The morphology and composition of rGO/Pt−Au composites had been characterized by scanning electron microscopy (SEM) coupled with energy‐dispersive X‐ray spectrometry (EDX), fourier transform‐infrared spectroscopy (FT‐IR) and electrochemical methods. Ofloxacin is a member of synthetic quinolones which has been widely used for the treatment of common diseases in humans and animals. The performance of the rGO/Pt−Au nanocomposite toward the oxidation of ofloxacin was compared with the other similar nanostructures like rGO/Pt and rGO/Au. In the optimized conditions, two linear calibration curves were obtained, from 0.08 to 10 μM and 10 to 100 μM ofloxacin. A detection limit of 0.05 μM ofloxacin was observed at pH 5.7 for the GCE/rGO/Pt−Au. The proposed sensor was successfully applied to determine ofloxacin in tablets and human urine samples and the results were satisfactory.  相似文献   

13.
《Analytical letters》2012,45(17):2786-2798
Prussian blue has significant application for the construction of electrochemical biosensors. In this work, Prussian blue-reduced graphene oxide modified glass carbon electrodes were successfully fabricated using electrochemical deposition. The high surface area of graphene oxide enhanced the deposition of Prussian blue and the resulting electrocatalytic activity. Infrared spectroscopy and scanning electron microscopy showed that the relatively porous Prussian blue was on the surface of reduced graphene oxide. Cyclic voltammetry showed that Prussian blue-coated reduced graphene oxide composite films improved electron transfer compared to Prussian blue films. The Prussian blue-reduced graphene oxide composite film provided higher response for the reduction of hydrogen peroxide and the oxidation of dopamine compared with the Prussian blue film due to synergistic effects between the reduced graphene oxide and Prussian blue particles. The sensitivity of the electrode was 0.1617 µA µM?1 cm?2. The linear dynamic range extended from 0.5 µM to 0.7 mM dopamine with a limit of detection equal to 125 nM. This work provided a versatile strategy for the design and construction of sensitive amperometric sensors with robust electrocatalytic behavior.  相似文献   

14.
In this study, magnetite nanorods stabilized on polyaniline/reduced graphene oxide (Fe3O4@PANI/rGO) was synthesized via a wet‐reflux strategy. The possible formation of Fe3O4@PANI/rGO was morphologically and structurally verified by field emission scanning electron microscopy (FE‐SEM), Fourier transform infrared (FT‐IR) spectroscopy, Raman spectroscopy, X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). Furthermore, the thermal stability of Fe3O4@PANI/rGO was measured by a thermogravimetric analyzer (TGA); the composite had good thermal stability owing to the ceramic nature of Fe3O4. The Fe3O4@PANI/rGO has been applied as a potential sensing platform for electrochemical detection of hydrogen peroxide (H2O2). By the combined efforts of extended active surface area, active carbon support, more catalytic active sites and high electrical conductivity, the Fe3O4@PANI/rGO exhibited an improved performance toward the non‐enzymatic detection of H2O2 in 0.5 M KOH with a fast response time (5 s), high sensitivity (223.7 μA mM?1 cm?2), low limit of detection (4.45 μM) and wide linear range (100 μM–1.5 mM). Furthermore, the fabricated sensor exhibited excellent recovery rates (94.2–104.0 %) during real sample analysis.  相似文献   

15.
We investigated an influence of amine adlayer on electrochemical sensing performances for uric acid detection on reduced graphene oxide (RGO)‐decorated indium‐tin oxide electrode surfaces. Various amine‐terminated molecules including aminoethyl aryldiazonium cation, 2,2′‐(ethylenedioxy)bis(ethylamine), 3‐aminopropyltriethoxysilane, polyethyleneimine were introduced as adlayers to electrostatically immobilize RGO on the electrode surfaces. The anodic oxidation current of uric acid was observed on the various surfaces with differential pulse voltammetry. The current was highly enhanced by electrocatalytic activity of RGO. The sensing performances including linearity, sensitivity, limit of detection, and correlation coefficient were measured and compared. The adlayer with 3‐aminopropyltriethoxysilane showed the best performances on the RGO‐modified surface.  相似文献   

16.
单云  张红琳  张凤 《应用化学》2015,32(7):837-842
分别采用改进Hummers方法和水热还原法制备了氧化石墨烯(GO)和还原氧化石墨烯(RGO)。 GO和RGO经透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、红外光谱(IR)、荧光发射和激发光谱(PL、PLE)等技术手段进行了表征。 荧光发射光谱显示,氧化石墨烯(GO)在可见光的激发下可以得到波长在600~800 nm范围内的宽谱近红外荧光。 通过比较氧化石墨烯水热还原前后的光谱变化,发现氧化石墨烯近红外荧光起源于氧化石墨烯的表面含氧基团,如C=O、COOH。 近红外荧光穿透性好、对生物组织损坏小,非常适合于生物成像,预示着氧化石墨烯在生物成像方面的应用潜力。  相似文献   

17.
Enhanced methods of drug monitoring are required to support the individualization of therapeutic drug dosing. Clozapine is one of the most important medications for managing schizophrenia, and timely measurement of serum clozapine levels has been identified as a barrier to the broader use of clozapine. For the first time, reduced graphene oxide nanocomposites were used to construct an electrochemical clozapine (Clz) sensor. The Reduced graphene oxide (Rego) nanocomposites were synthesized and characterized by using X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) techniques. The Clz sensing electrode was fabricated by drop coating of Rego nanocomposites suspension and Nafion solution on the pencil graphite electrode, respectively. The electrochemical behavior and influence of various physicochemical parameters of sensing electrodes were investigated by using cyclic voltammetry (CV) and differential voltammetry (DPV) techniques. The designed sensor displayed decent linear range, detection limit, reproducibility, and reusability results. Under optimum experimental parameters a linear dynamic range of 0.05–10 μM clozapine was observed with actual detection limit of 50 nM. Furthermore, the designed sensing electrode was used to measure the amount of Clz in real samples.  相似文献   

18.
An electrochemical sensing platform based on composite material, consisting of molecularly imprinted polymer coated on graphene oxide (MIP-GO), was developed for selective and sensitive analysis of amoxicillin (AMOX). The MIP-GO composite, which was fabricated by sol-gel polymerization after removal of template molecule, was deposited as a thin film on glassy carbon electrode, and then was electrochemically characterized by cyclic voltammetry and differential pulse voltammetry. The linear response for the determination of AMOX was obtained in the concentration range from 5.0×10−10 to 9.1×10−7 M under the most proper conditions and the detection limit was found to be 2.94×10−10 M.  相似文献   

19.
A novel nonenzymatic glucose sensor was developed based on well‐dispersed gold nanoparticles, which were in situ grown under direction of protein on a reduced graphene oxide modified electrode. This electrode exhibited high electrocatalytic activity towards glucose oxidation without use of any enzyme or mediator. In application for the amperometric detection of glucose, a wide linear range of 0.02–16.6 mM, low detection limit of 5 µM and good selectivity were obtained. The attractive analytical performances of the proposed glucose sensor, coupled with the facile preparation method, provide a promising electrochemical platform for the development of effective nonenzymatic sensors.  相似文献   

20.
Herein, co-electrodeposition of AuNPs and ERGO onto GCE was conducted to prepare the modified electrode, GCE/AuNPs-ERGO. The poly(indole-5-carboxylic acid) (P(In-5-COOH) was then coated onto the GCE/AuNPs-ERGO with the help of electropolymerization. FT-IR, FE-SEM and EDX, and XRD techniques were employed to characterize the prepared nanocomposite. The nanocomposite modified electrode (GCE/AuNPs-ERGO/P(In-5-COOH)) was examined for the electrochemical reduction of H2O2 using chronoamperometry. A high reduction current for H2O2 was observed due to the synergistic effect between AuNPs-ERGO and P(In-5-COOH). The proposed sensor demonstrated a wide linear range of 0.025–750 μmol L−1, with a LOD of 0.008 μmol L−1 at −0.4 V. Furthermore, the developed sensor was applied for the detection of H2O2 in fetal bovine serum and urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号