共查询到20条相似文献,搜索用时 0 毫秒
1.
Dan Yuan Sharda Yadav Hang T. Ta Hedieh Fallahi Hongjie An Navid Kashaninejad Chin Hong Ooi Nam-Trung Nguyen Jun Zhang 《Electrophoresis》2021,42(21-22):2230-2237
Microfluidic particle focusing has been a vital prerequisite step in sample preparation for downstream particle separation, counting, detection, or analysis, and has attracted broad applications in biomedical and chemical areas. Besides all the active and passive focusing methods in Newtonian fluids, particle focusing in viscoelastic fluids has been attracting increasing interest because of its advantages induced by intrinsic fluid property. However, to achieve a well-defined focusing position, there is a need to extend channel lengths when focusing micrometer-sized or sub-microsized particles, which would result in the size increase of the microfluidic devices. This work investigated the sheathless viscoelastic focusing of particles and cells in a zigzag microfluidic channel. Benefit from the zigzag structure of the channel, the channel length and the footprint of the device can be reduced without sacrificing the focusing performance. In this work, the viscoelastic focusing, including the focusing of 10 μm polystyrene particles, 5 μm polystyrene particles, 5 μm magnetic particles, white blood cells (WBCs), red blood cells (RBCs), and cancer cells, were all demonstrated. Moreover, magnetophoretic separation of magnetic and nonmagnetic particles after viscoelastic pre-focusing was shown. This focusing technique has the potential to be used in a range of biomedical applications. 相似文献
2.
《Electrophoresis》2018,39(2):417-424
Herein, we proposed a strategy for controlling the particle focusing position in Dean‐coupled elasto‐inertial flows via adjusting the polymer concentration of viscoelastic fluids. The physics behind the control strategy was then explored and discussed. At high polymer concentrations, the flowing particles could be single‐line focused exactly at the channel centerline under the dominated elastic force. The center‐line focusing in our spiral channel may employed as a potential pretreatment scheme for microflow cytometry detection. With further decreasing polymer concentrations, the particles would shift into the outer channel region under the comparable competition between inertial lift force, elastic force and Dean drag force. Finally, the observed position‐shifting was successfully employed for particle concentration at a throughput much higher than most existing elasto‐inertial microfluidics. 相似文献
3.
Electroosmotic flow is an efficient transportation technology driven by applying an external electric field across the microchannel, which has a great potential for future application. This work is presented to study the unsteady electroosmotic flow of viscoelastic fluids combined with a constant pressure gradient and a vertical magnetic field through a parallel plate microchannel. For the reason that the upper and bottom walls of the parallel plate microchannel in microfluidic devices can be made of different materials, this leads to different hydrophobic properties, asymmetric zeta wall potentials, and different slip boundary conditions. The Navier slip model with different slip coefficients at walls is considered. The generalized Maxwell fluid with fractional derivative is adopted for the constitutive equation of the fluid. The analytical and numerical solutions of velocity are derived by employing the integral transform method and finite difference method, respectively. Excellent agreement is found between the numerical solutions and analytical solutions. Finally, the effects of fractional parameter , relaxation time , slip coefficients and , the ratio of wall zeta potentials , Hartmann number , and electrical field strength parameter on velocity profiles are interpreted graphically in detail. 相似文献
4.
We report a numerical study on the effect of the skimming layer in an EOF of Oldroyd-B fluid over charge modulated walls. Three types of flow conditions were identified on the basis of the relative thickness of the skimming layer and the electrical double layer. We observe maximum slip velocity magnitude when the skimming layer thickness is very less than the thickness of the electrical double layer. For higher skimming layer thickness compared to the thickness of electrical double layer, slip velocity magnitude attenuates, and the polymeric stress inside the skimming layer becomes zero. Enhanced fluid elasticity generates asymmetric flow structures inside the microchannel, which can also be achieved by imposing an asymmetric surface charge along the channel walls. Our present analysis highlights the complex flow dynamics of the EOF of biofluids/polymeric fluids with a near-wall region depleted of macro-molecules. 相似文献
5.
Liang-Liang Fan Zhi Zhao Yi-Yi Tao Xu Wu Qing Yan Jiang Zhe Liang Zhao 《Electrophoresis》2020,41(10-11):973-982
A novel method is reported to enhance the focusing of microparticle in the viscoelastic fluid. Gradually contracted geometry is designed in microchannel, which changes the distribution of the elastic lift force on the cross section. Additionally, it induces the viscous drag force and the Saffman lift force in the lateral direction. Under the combined effect of these forces, microparticles fast migrate to the center of the channel. In comparison to the channel with constant cross section, the present channel significantly enhances the particle's lateral migration, leading to efficient viscoelastic particle focusing in a short channel length. The influence of flow rate, channel length, particle size and fluid property on the particle focusing is also investigated. With simple structure, small footprint and perfect particle focusing performance, the present device has great potential in the particle focusing processes in various lab-on-a-chip applications. 相似文献
6.
In electrokinetically driven microfluidic systems, the driving voltage applied during operation tends to induce a Joule heating effect in the buffer solution. This heat source alters the solution's characteristics and changes both the electrical potential field and the velocity field during the transport process. This study performs a series of numerical simulations to investigate the Joule heating effect and analyzes its influence on the electrokinetic focusing performance. The results indicate that the Joule heating effect causes the diffusion coefficient of the sample to increase, the potential distribution to change, and the flow velocity field to adopt a nonuniform profile. These variations are particularly pronounced under tighter focusing conditions and at higher applied electrical intensities. In numerical investigations, it is found that the focused bandwidth broadens because thermal diffusion effect is enhanced by Joule heating. The variation in the potential distribution induces a nonuniform flow field and causes the focused bandwidth to tighten and broaden alternately as a result of the convex and concave velocity flow profiles, respectively. The present results confirm that the Joule heating effect exerts a considerable influence on the electrokinetic focusing ratio. 相似文献
7.
Murat Serhatlioglu Mohammad Asghari Mustafa Tahsin Guler Caglar Elbuken 《Electrophoresis》2019,40(6):906-913
Elastic nature of the viscoelastic fluids induces lateral migration of particles into a single streamline and can be used by microfluidic based flow cytometry devices. In this study, we investigated focusing efficiency of polyethylene oxide based viscoelastic solutions at varying ionic concentration to demonstrate their use in impedimetric particle characterization systems. Rheological properties of the viscoelastic fluid and particle focusing performance are not affected by ionic concentration. We investigated the viscoelastic focusing dynamics using polystyrene (PS) beads and human red blood cells (RBCs) suspended in the viscoelastic fluid. Elasto‐inertial focusing of PS beads was achieved with the combination of inertial and viscoelastic effects. RBCs were aligned along the channel centerline in parachute shape which yielded consistent impedimetric signals. We compared our impedance‐based microfluidic flow cytometry results for RBCs and PS beads by analyzing particle transit time and peak amplitude at varying viscoelastic focusing conditions obtained at different flow rates. We showed that single orientation, single train focusing of nonspherical RBCs can be achieved with polyethylene oxide based viscoelastic solution that has been shown to be a good candidate as a carrier fluid for impedance cytometry. 相似文献
8.
9.
The enrichment and focusing of the nano-/submicroparticle (e.g., 150–1000 nm microvesicle shed from the plasma membrane) in the viscoelastic fluid has great potentials in the biomedical and clinical applications such as the disease diagnosis and the prognostic test for liquid biopsy. However, due to the small size and the resulting weak hydrodynamic force, the efficient manipulation of the nano-/submicroparticle by the passive viscoelastic microfluidic technology remains a major challenge. For instance, a typically long channel length is often required to achieve the focusing or the separation of the nano-/submicroparticle, which makes it difficult to be integrated in small chip area. In this work, a microchannel with gradually contracted cross-section and high aspect ratio (the ratio of the height to the average width of channel) is utilized to enhance the hydrodynamic force and change the force direction, eventually leading to the efficient enrichment of nano-/submicroparticles (500 and 860 nm) in a short channel length (2 cm). The influence of the flow rate, the particle size, the solid concentration, and the channel geometry on the enrichment of the nano-/submicroparticles are investigated. With simple structure, small footprint, easy operation, and good performance, the present device would be a promising platform for various lab-chip microvesicle-related biomedical research and disease diagnosis. 相似文献
10.
Microfluidic temperature gradient focusing (TGF) uses an axial temperature gradient to induce a gradient in electrophoretic flux within a microchannel. When balanced with an opposing fluid flow, charged analytes simultaneously focus and separate according to their electrophoretic mobilities. We present a theoretical and experimental study of dispersion in TGF. We model the system using generalized dispersion analysis that yields a 1-D convection-diffusion equation that contains dispersion terms particular to TGF. We consider analytical solutions for the model under uniform temperature gradient conditions. Using a custom TGF experimental setup, we compare focusing measurements with the theoretical predictions. We find that the theory well represents the focusing behavior for flows within the Taylor-Aris dispersion regime. 相似文献
11.
Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping 总被引:2,自引:0,他引:2
We experimentally study the production of micrometer-sized droplets using microfluidic technology and a flow-focusing geometry. Two distinct methods of flow control are compared: (i) control of the flow rates of the two phases and (ii) control of the inlet pressures of the two phases. In each type of experiment, the drop size l, velocity U and production frequency f are measured and compared as either functions of the flow-rate ratio or the inlet pressure ratio. The minimum drop size in each experiment is on the order of the flow focusing contraction width a. The variation in drop size as the flow control parameters are varied is significantly different between the flow-rate and inlet pressure controlled experiments. 相似文献
12.
Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-based numerical analysis where the coupled electric field and the transport equations are solved to describe the effects of the shear-dependent apparent viscosity of a non-Newtonian BGE on the localized concentration buildup of a charged bio-sample inside a microchannel by TGF via Joule heating. Effects of the temperature-dependent nature of the wall zeta potential and the flow behavior index (n) of BGE on the flow, thermal, and species concentration profiles inside the microchannel have been investigated. Study using a fluorescein-Na analyte sample shows that the maximum normalized analyte concentration (Cmax/C0) reduces as the zeta potential increases linearly with temperature. The maximum concentration enhancement is achieved when the BGE displays the Newtonian rheology. For example, Cmax/C0 increases 134- to 280-fold when n is increased from 0.8 to 1 (pseudoplastic regime) and again reduces to 190-fold when n increases further from 1 to 1.2 (dilatant regime). 相似文献
13.
Electroosmotic flow (EOF) has been widely used to transport fluids and samples in micro- and nanofluidic channels for lab-on-a-chip applications. This essentially surface-driven plug-like flow is, however, sensitive to both the fluid and wall properties, of which any inhomogeneity may draw disturbances to the flow and even instabilities. Existing studies on EOF instabilities have been focused primarily upon Newtonian fluids though many of the chemical and biological solutions are actually non-Newtonian. We carry out a systematic experimental investigation of the fluid rheological effects on the elastic instability in the EOF of phosphate buffer-based polymer solutions through T-shaped microchannels. We find that electro-elastic instabilities can be induced in shear thinning polyacrylamide (PAA) and xanthan gum (XG) solutions if the applied direct current voltage is above a threshold value. However, no instabilities are observed in Newtonian or weakly shear thinning viscoelastic fluids including polyethylene oxide (PEO), polyvinylpyrrolidone (PVP), and hyaluronic acid (HA) solutions. We also perform a quantitative analysis of the wave parameters for the observed elasto-elastic instabilities. 相似文献
14.
The simulation results on viscoelastic fluid flows in sudden expansion geometry with different expansion ratios are presented. Oldroyd-B, linear Phan-Thien-Tanner (L-PTT) and Finitely Extensible Nonlinear Elastic (FENE-P) based constitutive equations were applied in two-dimensional Cartesian coordinates. The governing equations in transient and fully developed regions were solved using open source software called OpenFOAM. The flow patterns, including velocity profiles, shear stresses and first normal stress differences in some horizontal and vertical sections are illustrated. In addition, effects of the fluid type, flow dynamics and expansion ratio on the flow and vortex patterns in transient and fully developed regions are presented and discussed. The presented results show that existences of vortices cause the inverse velocity and negative stresses in expansion regions of the channel which increase with increment of expansion ratio and Weissenberg number (We). Furthermore, some dead spaces can be observed at channel expansion regions close to the wall which are also increased. The results also show that at low We numbers all fluids show close behavior while at high We numbers the FENE-P fluid behavior shows high divergence from that of the two other fluids. 相似文献
15.
Various operational parameters affecting the formation of the density gradient generated by the electric field action on a binary pseudo-continuous carrier liquid composed of charged colloidal silica particles suspended in water and the isopycnic focusing of sample particles were investigated under conditions of static thin layer focusing and dynamic focusing field-flow fractionation. The properties and the behavior of the density gradient forming carrier liquid were studied. The experimental results are compared with theoretical predictions and discussed with respect to potential applications of the proposed concept not only for separation purposes but also for studies of interparticle interactions. 相似文献
16.
Recombinant proteins are often produced as isoforms with different kinds and amounts of post-translational modifications that alter their function. Isoelectric focusing in shallow pH gradients, less than 0.5 pH/cm, might be capable of fractionating these isoforms. The synthetic carrier ampholyte mixtures typically used to generate these pH gradients are expensive and may adversely interact with proteins. Using defined buffers instead of synthetic carrier ampholytes reduces these problems. We tested two defined buffer systems in a vortex-stabilized electrophoresis device to see if they could form shallow pH gradients useful for separating isoforms. These pH gradients were formed by pouring a two-component concentration gradient. The poured gradients were smooth, reproducible, and stable for at least 1.5 h at 5 kV. One poured gradient focused 20 mg of cytochrome c. A second poured gradient separated glucose oxidase from amyloglucosidase. The breadth of the amyloglucosidase band indicates that the shallow, poured pH gradients can only partially separate protein isoforms at 10 kV. Proteins with pI < 0.2 pH units apart will have overlapping bands in these shallow, poured pH gradients. 相似文献
17.
A numerical investigation is performed into the mixing performance of electrokinetically driven non-Newtonian fluids in a wavy serpentine microchannel. The flow behavior of the non-Newtonian fluids is described using a power-law model. The simulations examine the effects of the flow behavior index, the wave amplitude, the wavy-wall section length, and the applied electric field strength on the mixing performance. The results show that the volumetric flow rate of shear-thinning fluids is higher than that of shear-thickening fluids, and therefore results in a poorer mixing performance. It is shown that for both types of fluid, the mixing performance can be enhanced by increasing the wave amplitude, extending the length of the wavy-wall section, and reducing the strength of the electric field. Thus, although the mixing efficiency of shear-thinning fluids is lower than that of shear-thickening fluids, the mixing performance can be improved through an appropriate specification of the flow and geometry parameters. For example, given a shear-thinning fluid with a flow behavior index of 0.8, a mixing efficiency of 87% can be obtained by specifying the wave amplitude as 0.7, the wavy-wall section length as five times the characteristic length, the nondimensional Debye-Huckel parameter as 100, and the applied electric field strength as 43.5 V/cm. 相似文献
18.
Saliva and blood plasma are non-Newtonian viscoelastic fluids that play essential roles in the transport of particulate matters (e.g., food and blood cells). However, whether the viscoelasticity of such biofluids alters the dynamics of suspended particles is still unknown. In this study, we report that under pressure-driven microflows of both human saliva and blood plasma, spherical particles laterally migrate and form a focused stream along the channel centerline by their viscoelastic properties. We observed that the particle focusing varied among samples on the basis of sampling times/donors, thereby demonstrating that the viscoelasticity of the human biofluids can be affected by their compositions. We showed that the particle focusing, observed in bovine submaxillary mucin solutions, intensified with the increase in mucin concentration. We expect that the findings from this study will contribute to the understanding of the physiological roles of viscoelasticity of human biofluids. 相似文献
19.
Free-flow electrophoresis (FFE) has the ability to continuously separate charged solutes from complex biological mixtures. Recently, a free-flow counterflow gradient focusing mechanism has been introduced to FFE, and it offers the potential for improved resolution and versatility. However, further investigation is needed to understand the solute dispersion at the focal position. Therefore, the goal of this work is to model the impact of electroosmotic flow, which is found to produce a pressure-driven backflow to maintain the fixed counterflow inputs. Like the counterflow, this backflow has a parabolic velocity profile that must be considered when predicting the concentration distribution of a given solute. After the model is established, preliminary experimental results are presented for a qualitative comparison. Results demonstrate a reasonable agreement at low applied voltages and provide a strong framework for future experimental validation. 相似文献
20.
Zijia Li Long He Mingwei Zhao Yining Wu 《Journal of Dispersion Science and Technology》2013,34(12):1795-1803
Polymers are abundantly used in oil production industry, especially in enhanced oil recovery process. The underground oil reservoir is a kind of porous media where complex microscopic geometries lead to strong shearing and extensional components. This research focuses on a novel method used to investigate the flow behaviors of hydrolyzed polyacrylamide solution at a micro pore-throat structure with a comparison with Newtonian flow of water. For polymer solution, the flow velocimetry revealed the viscoelastic flow has two main characters compared with Newtonian fluid. First, the instability or non-linearity of polymer flows led to bending and distorted streamlines. The instability of the flow is mainly caused by the growth of high stress generated in the viscoelastic polymer fluid as it accelerates and decelerates into and out from the narrow throat, respectively speaking. The second character is the back-streams at the outlet of the throat. 相似文献