首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermally reversible Pluronic gels have been employed as separation matrices in microfluidic devices in the analysis of biological macromolecules. The phase of these gels can be tuned between liquid and solid states using temperature to vary fluidic resistance and alter peak resolution. Although separations in thermal gels have been characterized, their effect on isotachophoresis has not. This study used fluorescein as a model analyte to evaluate isotachophoretic preconcentration as a function of thermal polymer concentration and temperature. Results demonstrated that increasing polymer concentration in microfluidic channels increased the apparent analyte concentration. A critical minimum of 10% (w/v) Pluronic was required to achieve efficient preconcentration with maximum focusing occurring in 20 and 25% polymer gels. Temperature of the thermal gel also impacted analyte focusing. Most efficient focusing was achieved at 25°C with diminishing analyte accumulation at higher and lower temperatures. Under optimal conditions, isotachophoretic preconcentration increased an additional threefold simply by including thermal gels in the system. This approach can be readily implemented in other applications to increase detection sensitivity and measure low-concentration analytes within simple microfluidic devices.  相似文献   

2.
Electric fields offer a variety of functionalities to Lab‐on‐a‐Chip devices. The use of these fields often results in significant Joule heating, affecting the overall performance of the system. Precise knowledge of the temperature profile inside a microfluidic device is necessary to evaluate the implications of heat dissipation. This article demonstrates how an optically trapped microsphere can be used as a temperature probe to monitor Joule heating in these devices. The Brownian motion of the bead at room temperature is compared with the motion when power is dissipated in the system. This gives an estimate of the temperature increase at a specific location in a microfluidic channel. We demonstrate this method with solutions of different ionic strengths, and establish a precision of 0.9 K and an accuracy of 15%. Furthermore, it is demonstrated that transient heating processes can be monitored with this technique, albeit with a limited time resolution.  相似文献   

3.
Solid supports for micro analytical systems   总被引:2,自引:0,他引:2  
Peterson DS 《Lab on a chip》2005,5(2):132-139
The development of micro analytical systems requires that fluids are able to interact with the surface of the microfluidic chip in order to perform analysis such as chromatography, solid phase extraction, and enzymatic digestion. These types of analyses are more efficient if there are solid supports within the microfluidic channels. In addition, solid supports within microfluidic chips are useful in producing devices with multiple functionalities. In recent years there have been many approaches introduced for incorporating solid supports within chips. This review will explore several state of the art methods and applications of introducing solid supports into chips. These include packing chips with beads, incorporating membranes into chips, creating supports using microfabrication, and fabricating gels and polymer monoliths within microfluidic channels.  相似文献   

4.
Tang G  Yan D  Yang C  Gong H  Chai JC  Lam YC 《Electrophoresis》2006,27(3):628-639
Joule heating is inevitable when an electric field is applied across a conducting medium. It would impose limitations on the performance of electrokinetic microfluidic devices. This article presents a 3-D mathematical model for Joule heating and its effects on the EOF and electrophoretic transport of solutes in microfluidic channels. The governing equations were numerically solved using the finite-volume method. Experiments were carried out to investigate the Joule heating associated phenomena and to verify the numerical models. A rhodamine B-based thermometry technique was employed to measure the solution temperature distributions in microfluidic channels. The microparticle image velocimetry technique was used to measure the velocity profiles of EOF under the influence of Joule heating. The numerical solutions were compared with experimental results, and reasonable agreement was found. It is found that with the presence of Joule heating, the EOF velocity deviates from its normal "plug-like" profile. The numerical simulations show that Joule heating not only accelerates the sample transport but also distorts the shape of the sample band.  相似文献   

5.
Joule heating is an inevitable phenomenon for microfluidic chips involving electrokinetic pumping, and it becomes a more important issue when chips are made of polymeric materials because of their low thermal conductivities. Therefore, it is very important to develop methods for evaluating Joule heating effects in microfluidic chips in a relatively easy manner. To this end, two analytical models have been established and solved using the Green's function for evaluating Joule heating effects on the temperature distribution in a microfluidic-based PCR chip. The first simplified model focuses on the understanding of Joule heating effects by ignoring the influences of the boundary conditions. The second model aims to consider practical experimental conditions. The analytical solutions to the two models are particularly useful in providing guidance for microfluidic chip design and operation prior to expensive chip fabrication and characterization. To validate the analytical solutions, a 3-D numerical model has also been developed and the simultaneous solution to this model allows the temperature distribution in a microfluidic PCR chip to be obtained, which is used to compare with the analytical results. The developed numerical model has been applied for parametric studies of Joule heating effects on the temperature control of microfluidic chips.  相似文献   

6.
Ge Z  Wang W  Yang C 《Lab on a chip》2011,11(7):1396-1402
It is challenging to continuously concentrate sample solutes in microfluidic channels. We present an improved electrokinetic technique for enhancing microfluidic temperature gradient focusing (TGF) of sample solutes using combined AC and DC field induced Joule heating effects. The introduction of an AC electric field component services dual functions: one is to produce Joule heat for generating temperature gradient; the other is to suppress electroosmotic flow. Consequently the required DC voltages for achieving sample concentration by Joule heating induced TGF are reduced, thereby leading to smaller electroosmotic flow (EOF) and thus backpressure effects. As a demonstration, the proposed technique can lead to concentration enhancement of sample solutes of more than 2500-fold, which is much higher than the existing literature reported microfluidic concentration enhancement by utilizing the Joule heating induced TGF technique.  相似文献   

7.
Heterochromatin protein 1α (HP1α) undergoes liquid–liquid phase separation (LLPS) and forms liquid droplets and gels in vitro, properties that also appear to be central to its biological function in heterochromatin compaction and regulation. Here we use solid‐state NMR spectroscopy to track the conformational dynamics of phosphorylated HP1α during its transformation from the liquid to the gel state. Using experiments designed to probe distinct dynamic modes, we identify regions with varying mobilities within HP1α molecules and show that specific serine residues uniquely contribute to gel formation. The addition of chromatin disturbs the gelation process while preserving the conformational dynamics within individual bulk HP1α molecules. Our study provides a glimpse into the dynamic architecture of dense HP1α phases and showcases the potential of solid‐state NMR to detect an elusive biophysical regime of phase separating biomolecules.  相似文献   

8.
Instability occurs in the electrokinetic flow of fluids with conductivity and/or permittivity gradients if the applied electric field is beyond a critical value. Understanding such an electrokinetic instability is significant for both improved transport (via the suppressed instability) and enhanced mixing (via the promoted instability) of liquid samples in microfluidic applications. This work presents the first study of Joule heating effects on electrokinetic microchannel flows with conductivity gradients using a combined experimental and numerical method. The experimentally observed flow patterns and measured critical electric fields under Joule heating effects to different extents are reasonably predicted by a depth-averaged numerical model. It is found that Joule heating increases the critical electric field for the onset of electrokinetic instability because the induced fluid temperature rise and in turn the fluid property change (primarily the decreased permittivity) lead to a smaller electric Rayleigh number.  相似文献   

9.
Erickson D  Sinton D  Li D 《Lab on a chip》2003,3(3):141-149
Joule heating is a significant problem in electrokinetically driven microfluidic chips, particularly polymeric systems where low thermal conductivities amplify the difficulty in rejecting this internally generated heat. In this work, a combined experimental (using a microscale thermometry technique) and numerical (using a 3D "whole-chip" finite element model) approach is used to examine Joule heating and heat transfer at a microchannel intersection in poly(dimethylsiloxane)(PDMS), and hybrid PDMS/Glass microfluidic systems. In general the numerical predictions and the experimental results agree quite well (typically within +/- 3 degree C), both showing dramatic temperature gradients at the intersection. At high potential field strengths a nearly five fold increase in the maximum buffer temperature was observed in the PDMS/PDMS chips over the PDMS/Glass systems. The detailed numerical analysis revealed that the vast majority of steady state heat rejection is through lower substrate of the chip, which was significantly impeded in the former case by the lower thermal conductivity PDMS substrate. The observed higher buffer temperature also lead to a number of significant secondary effects including a near doubling of the volume flow rate. Simple guidelines are proposed for improving polymeric chip design and thereby extend the capabilities of these microfluidic systems.  相似文献   

10.
Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity, and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary electrophoretic separations.  相似文献   

11.
Joule heating is present in electrokinetically driven flow and mass transport in microfluidic systems. Nowadays, there is a trend of replacing costly glass-based microfluidic systems by the disposable, cheap polymer-based microfluidic systems. Due to poor thermal conductivity of polymer materials, the thermal management of the polymer-based microfluidic systems may become a problem. In this study, numerical analysis is presented for transient temperature development due to Joule heating and its effect on the electroosmotic flow (EOF) and mass species transport in microchannels. The proposed model includes the coupling Poisson-Boltzmann (P-B) equation, the modified Navier-Stokes (N-S) equations, the conjugate energy equation, and the mass species transport equation. The results show that the time development for both the electroosmotic flow field and the Joule heating induced temperature field are less than 1 s. The Joule heating induced temperature field is strongly dependent on channel size, electrolyte concentration, and applied electric field strength. The simulations reveal that the presence of the Joule heating can result in significantly different characteristics of the electroosmotic flow and electrokinetic mass transport in microchannels.  相似文献   

12.
Several attempts have been made recently in order to develop “smart” windows, which can moderate light and heat intensities. Thermotropic gels have met with growing interest because of their advanced properties. Based upon phase transitions of polymer gels, a novel thermally adjustable window, which includes a gel layer, has been developed in our laboratory. The so-called gel-glass becomes opaque when the temperature exceeds a certain value and goes back to its original transparent state when it is cooled below the critical value again. Intelligent “gel-glasses” made of these materials can moderate the amount of sunlight and radiated heat. The optical properties of the gel layer are also modified by the Joule heat of audio frequency AC current. Two types of gel-glasses have been developed and investigated. Phase transition temperature of a poly(N-isopropylacrylamide) based gel was adjusted by copolymerization and by changing of the solvent composition. The cloud point of a poly(methyl vinyl ether) – water system in a PVA gel was varied by modifying the composition of the swelling agent. In the case of electrically adjustable thermotropic windows, optical properties, energy consumption and temperature changes during the switching process were studied.  相似文献   

13.
This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40 s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model.  相似文献   

14.
Polymers are important as materials for manufacturing microfluidic devices for electrodriven separations, in which Joule heating is an unavoidable phenomenon. Heating effects were investigated in polymer capillaries using a CE setup. This study is the first step toward the longer-term objective of the study of heating effects occurring in polymeric microfluidic devices. The thermal conductivity of polymers is much smaller than that of fused silica (FS), resulting in less efficient dissipation of heat in polymeric capillaries. This study used conductance measurements as a temperature probe to determine the mean electrolyte temperatures in CE capillaries of different materials. Values for mean electrolyte temperatures in capillaries made of New Generation FluoroPolymer (NGFP), poly-(methylmethacrylate) (PMMA), and poly(ether ether ketone) (PEEK) capillaries were compared with those obtained for FS capillaries. Extrapolation of plots of conductance versus power per unit length (P/L) to zero power was used to obtain conductance values free of Joule heating effects. The ratio of the measured conductance values at different power levels to the conductance at zero power was used to determine the mean temperature of the electrolyte. For each type of capillary material, it was found that the average increase in the mean temperature of the electrolyte (DeltaT(Mean)) was directly proportional to P/L and inversely proportional to the thermal conductivity (lambda) of the capillary material. At 7.5 W/m, values for DeltaT(Mean) for NGFP, PMMA, and PEEK were determined to be 36.6, 33.8, and 30.7 degrees C, respectively. Under identical conditions, DeltaT(Mean) for FS capillaries was 20.4 degrees C.  相似文献   

15.
Electroosmotic flow with Joule heating effects   总被引:9,自引:0,他引:9  
Xuan X  Xu B  Sinton D  Li D 《Lab on a chip》2004,4(3):230-236
Electroosmotic flow with Joule heating effects was examined numerically and experimentally in this work. We used a fluorescence-based thermometry technique to measure the liquid temperature variation caused by Joule heating along a micro capillary. We used a caged-fluorescent dye-based microfluidic visualization technique to measure the electroosmotic velocity profile along the capillary. Sharp temperature drops close to the two ends and a high-temperature plateau in the middle of the capillary were observed. Correspondingly, concave-convex-concave velocity profiles were observed in the inlet-middle-outlet regions of a homogeneous capillary. These velocity perturbations were due to the induced pressure gradients resulting from axial variations of temperature. The measured liquid temperature distribution and the electroosmotic velocity profile along the capillary agree well with the predictions of a theoretical model developed in this paper.  相似文献   

16.
Effective heat dissipation is critical for reproducible and efficient separations in electrically driven separation systems. Flow rate, retention kinetics, and analyte diffusion rates are some of the characteristics that are affected by variation in the temperature of the mobile phase inside the column. In this study, we examine the issue of Joule heating in packed capillary columns used in capillary electrochromatography (CEC). As almost all commonly used CEC packings are poor thermal conductors, it is assumed that the packing particles do not conduct heat and heat transfer is solely through the mobile phase flowing through the system. The electrical conductivity of various mobile phases was measured at different temperatures by a conductivity meter and the temperature coefficient for each mobile phase was calculated. This was followed by measurement of the electrical current at several applied voltages to calculate the conductivity of the solution within the column as a function of the applied voltage. An overall increase in the conductivity is attributed to Joule heating within the column, while a constant conductivity means good heat dissipation. A plot of conductivity versus applied voltage was used as the indicator of poor heat dissipation. Using theories that have been proposed earlier for modeling of Joule heating effects in capillary electrophoresis (CE), we estimated the temperature within CEC columns. Under mobile and stationary phase conditions typically used in CEC, heat dissipation was found to be not always efficient. Elevated temperatures within the columns in excess of 23 degrees C above ambient temperature were calculated for packed columns, and about 35 degrees C for an open column, under a given set of conditions. The results agree with recently published experimental findings with nuclear magnetic resonance (NMR) thermometry, and Raman spectroscopic measurements.  相似文献   

17.
The manipulation of living biological cells in microfluidic channels by a combination of negative dielectrophoretic barriers and pressure-driven flows is widely employed in lab-on-a-chip systems. However, electric fields in conducting media induce Joule heating. This study investigates if the local temperatures reached under typical experimental conditions in miniaturized systems cause a potential risk for hyperthermic stress or cell damage. Two methods of optical in situ temperature detection have been tested and compared: (i) the exposure of the thermo-dependent fluorescent dye Rhodamine B to heat sources situated in microfluidic channels, and (ii) the use of thermoprecipitating N-alkyl-substituted acrylamide polymers as temperature threshold probes. Two-dimensional images of temperature distributions in the vicinity of active negative dielectrophoresis (nDEP)-barriers have been obtained and local temperature variations of more than 20 degrees C have been observed at the electrode edges. Heat propagation via both buffer and channel walls lead to significant temperature increases within a perimeter of 100 microm and more. These data indicate that power dissipation has to be taken into account when experiments at physiological temperatures are planned.  相似文献   

18.
19.
Huang KD  Yang RJ 《Electrophoresis》2006,27(10):1957-1966
In electrokinetically driven microfluidic systems, the driving voltage applied during operation tends to induce a Joule heating effect in the buffer solution. This heat source alters the solution's characteristics and changes both the electrical potential field and the velocity field during the transport process. This study performs a series of numerical simulations to investigate the Joule heating effect and analyzes its influence on the electrokinetic focusing performance. The results indicate that the Joule heating effect causes the diffusion coefficient of the sample to increase, the potential distribution to change, and the flow velocity field to adopt a nonuniform profile. These variations are particularly pronounced under tighter focusing conditions and at higher applied electrical intensities. In numerical investigations, it is found that the focused bandwidth broadens because thermal diffusion effect is enhanced by Joule heating. The variation in the potential distribution induces a nonuniform flow field and causes the focused bandwidth to tighten and broaden alternately as a result of the convex and concave velocity flow profiles, respectively. The present results confirm that the Joule heating effect exerts a considerable influence on the electrokinetic focusing ratio.  相似文献   

20.
The influence of Joule heating on electroosmotic flow velocity, the retention factor of neutral analytes, and separation efficiency in capillary electrochromatography was investigated theoretically and experimentally. A plot of electrical current against the applied electrical field strength was used to evaluate the Joule heating effect. When the mobile phase concentration of Tris buffer exceeded 5.0 mM in the studied capillary electrochromatography systems using particulate and monolithic columns (with an accompanying power level of heat dissipation higher than 0.35 W/m), the Joule heating effect became clearly noticeable. Theoretical models for describing the variation of electroosmotic flow velocity with increasing applied field strength and the change of retention factors for neutral analytes with electrical field strength at higher Tris buffer concentrations were analyzed to explain consequences of Joule heating in capillary electrochromatography. Qualitative agreement between experimental data and implications of the theoretical model analysis was observed. The decrease of separation efficiency in capillary electrochromatography with macroporous octadecylsilica particles at high buffer concentration can be also attributed to Joule heating mainly via the increased axial diffusion of the analyte molecules and dispersion of solute bands by a nonuniform electroosmotic flow profile over the column cross-section. However, within a moderate temperature range, the contribution of the macroscopic velocity profile in the column arising from radial temperature gradients is insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号