首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrochemical aptasensor for ochratoxin A (OTA) detection has been developed on the base of a gold electrode covered with electropolymerized neutral red and silver nanoparticles obtained by chemical reduction with macrocyclic ligands bearing catechol fragments. Thiolated aptamers against OTA were covalently attached to silver nanoparticles via Ag? S bonding. The interaction with OTA induced the conformational switch of the aptamer, which caused increase of the charge transfer resistance measured by EIS in the presence of ferricyanide ions. The LOD achieved (0.05 nM) was comparable to other electrochemical aptasensors employing sophisticated assembling technique and enzyme amplification of the signal. The aptasensor was validated in spiked beer samples. The recovery of the OTA determination was found to be 66.3±14.1 % for light beer and 64.3±1.8 % for dark beer.  相似文献   

2.
《Electroanalysis》2018,30(3):551-560
The development of a low‐cost and disposable biosensor platform for the sensitive and rapid detection of microRNAs (miRNAs) is of great interest for healthcare, pharmaceuticals, and medical science. We designed an impedimetric biosensing platform using Chitosan (CHIT)/nitrogen doped reduced graphene oxide (NRGO) conductive composite to modify the surface of pencil graphite electrodes (PGE) for the sensitive detection of miRNAs. An initial optimisation protocol involved investigation of the effect of NRGO concentration and miR 660 DNA probe concentration on the response of the modified electrode. After the optimization protocol, the sequence‐selective hybridization between miR 660 DNA probe and its RNA target was evaluated by measuring changes on charge transfer resistance, Rct values. Moreover, the selectivity of impedimetric biosensor was tested in the presence of non‐complementary miRNA (NC) sequences, such as miR 34a and miR 16. The hybridization process was examined both in phosphate buffer (PBS) and in PBS diluted fetal bovine serum (FBS:PBS) solutions. The biosensor demonstrated a detection limit of 1.72 μg/mL in PBS and 1.65 μg/mL in FBS:PBS diluted solution. Given the easy, quick and disposable attributes, the proposed conductive nanocomposite biosensor platform shows great promise as a low‐cost sensor kit for healthcare monitoring, clinical diagnostics, and biomedical devices.  相似文献   

3.
毛伟伟  魏小红  尤金坤  张红艳 《化学通报》2020,83(12):1081-1088
赭曲霉毒素(Ochratoxin)是一类主要由曲霉菌和青霉菌产生的次生代谢产物,其中赭曲霉毒素A(OTA)的毒性最强。OTA相当稳定,常规的食品加工难以去除,若摄入受OTA污染的食品或药物会对人类造成严重的危害。实现对OTA的灵敏和快速检测是及早发现和处置OTA污染的关键。近年来,核酸适配体因其独特的优点,被作为抗体的替代物用于构建OTA电化学生物传感器。本文介绍了经典的OTA检测方法和基于适配体的电化学生物传感检测方法,从OTA电化学适配体传感器的适配体优化、新型材料应用以及生物信号放大技术的应用等三个方面总结了该生物传感技术的研究现状,并对其未来的发展进行了展望。  相似文献   

4.
In this work, we report on the preparation of a simple, sensitive DNA impedance sensor. Firstly gold nanoparticles were electrodeposited on the surface of a gold electrode, and then probe DNA was immobilized on the surface of gold nanoparticles through a 5′‐thiol‐linker. Electrochemical impedance spectroscopy (EIS) was used to investigate probe DNA immobilization and hybridization. Compared to the bare gold electrode, the gold nanoparticles modified electrode could improve the density of probe DNA attachment and the sensitivity of DNA sensor greatly. The difference of electron transfer resistance (ΔRet) was linear with the logarithm of complementary oligonucleotides sequence concentrations in the range of 2.0×10?12 to 9.0×10?8 M, and the detection limit was 6.7×10?13 M. In addition, the DNA sensor showed a fairly good reproducibility and stability during repeated regeneration and hybridization cycles.  相似文献   

5.
《Electroanalysis》2018,30(8):1791-1800
We report the effect of electrochemical anodization on the properties of monolayer graphene as the main aim of this research and consequently using the resulting label‐free impedimetric biosensor for DNA sequences detection. Monolayer graphene was grown by chemical vapor deposition (CVD) with methane as precursor on copper foil, transferred onto a glassy carbon electrode and electrochemically anodized. Raman spectroscopy and X‐Ray photo electron spectroscopy revealed enhancement of defect density, roughness and formation of C−O−C, C−O−H and C=O functional groups after anodization. Amine‐terminated poly T probe was linked covalently to the carboxylic groups of anodized graphene by the zero‐length linker to fabricate the impedance‐based DNA biosensor. The anodized graphene electrode demonstrated a superior performance for electrochemical impedance detection of DNA. The DNA biosensor showed a large linear dynamic range from 2.0×10−18 to 1.0×10−12 M with a limit of detection of 1.0×10−18 M using electrochemical impedance spectroscopy (EIS) method. Equivalent circuit modeling shows that DNA hybridization is detected through a change in charge transfer resistance.  相似文献   

6.
《Electroanalysis》2017,29(11):2665-2671
Detection of Enterotoxigenic Escherichia coli in various biological samples has tremendous importance in human health. In this direction, we have designed a label free electrochemical biosensor for highly selective detection of Escherichia coli through detecting ST gene. The ability of sensor probe to detect STG was confirmed using polymerase chain reaction. The biosensor was fabricated based on STG specific probes immobilized on platinum nanoparticles chitosan nanocomposite on screen printed carbon electrode, which was characterized by cyclic voltammetry, transmission electron microscopy, and fourier transform infrared spectroscopy. A highly sensitive label free sensing was achieved by analyzing STG hybridization using electrochemical impedance spectroscopy (EIS) technique. The EIS analysis showed a significant increase in charge transfer resistance after STG interaction with the highly selective ssDNA probe immobilized on the nanocomposite film. The increase in charge transfer resistance was evaluated for varying concentrations of STG, which shows a dynamic range between 1.0×10−12 and 1.0×10−4 with the detection limit of 3.6×10−14 M (RSD<4.5 %). The regeneration of sensor probe was also studied and interference due to non‐target sequences was evaluated to ensure the selectivity of the designed sensor. The practical applicability of sensor probe was also analyzed by detecting the STG from the bacteria present in surface water.  相似文献   

7.
采用石墨烯(RGO)作载体,凝血酶适体(TBA)作探针,凝血酶为目标蛋白,电化学阻抗谱(EIS)为检测技术,建立了检测蛋白质的新方法。由于RGO可增大电极有效表面积并提高电极表面电子传输速率以及TBA的特异性识别能力,此方法具有较高的灵敏度和良好的选择性。采用本方法检测凝血酶的线性范围为0.3~10 fmol/L,检出限为0.26 fmol/L。本研究将RGO应用于电化学适体传感器,证实了RGO修饰电极在电化学适体传感器领域中潜在的应用价值。  相似文献   

8.
以室温固相合成法制备纳米ZnO,通过壳聚糖(CHIT)的成膜效应将纳米ZnO固定在玻碳电极(GCE)表面,制得的ZnO/CHIT/GCE电极成为DNA固定和杂交的良好平台。DNA的固定和杂交通过电化学交流阻抗进行表征。以电化学交流阻抗免标记法检测目标DNA,固定于电极表面的DNA探针与目标DNA杂交后使电极表面的电子传递电阻增大,以此作为检测信号可以高灵敏度地测定目标DNA。电化学阻抗谱检测人类免疫缺陷病毒(HIV)基因片段的线性范围为2.0×10-11~2.0×10-6mol/L,检出限为2.0×10-12mol/L。  相似文献   

9.
The impedimetric aptasensor for Thrombin (THR) was developed for the first time herein by measuring changes at the charge‐transfer resistance, Rct upon to protein? aptamer complex formation. After covalent activation of pencil graphite electrode (PGE) surface using covalent agents, amino linked aptamer (APT) was immobilized onto activated PGE surface. Then APT‐THR interaction was explored by electrochemical impedance spectroscopy (EIS). After the optimization of experimental conditions (e.g., APT and THR concentration, immobilization and interaction times), the selectivity of impedimetric aptasensor was tested in the presence of other biomolecules: factor Va and bovine serum albumine (BSA) both in buffer media, or in diluted fetal bovine serum (FBS).  相似文献   

10.
A DNA‐based biosensor was reported for detection of silver ions (Ag+) by electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]4?/3? as redox probe and hybridization chain reaction (HCR) induced hemin/G‐quadruplex nanowire as enhanced label. In the present of target Ag+, Ag+ interacted with cytosine‐cytosine (C? C) mismatch to form the stable C? Ag+? C complex with the aim of immobilizing the primer DNA on electrode, which thus triggered the HCR to form inert hemin/G‐quadruplex nanowire with an amplified EIS signal. As a result, the DNA biosensor showed a high sensitivity with the concentration range spanning from 0.1 nM to 100 µM and a detection limit of 0.05 nM.  相似文献   

11.
This work summarizes the manufacturing procedure of Horseradish peroxidase (HRP) based biosensors for the determination of the mycotoxin Ochratoxin A (OTA). The biosensors have been fabricated using the single technology of screen-printing. That is to say, an HRP containing ink has been directly screen-printed onto carbon electrodes, which offers a higher rapidity and simplicity in the manufacturing process of biosensors for OTA determination. The formal redox potential of the Fe(III/II) moiety of HRP has been used to demonstrate the effective loading of enzyme into the ink. The chronoamperometric oxidation current registered has been successfully related to the concentration of OTA in solution from different samples, including beer ones. Under the optimum conditions of the experimental variables, precision in terms of reproducibility and repeatability has been calculated in the concentration range from 23.85 to 203.28 nM. A relative standard deviation for the slopes of 10% (n = 4) was obtained for reproducibility. In the case of repeatability, the biosensor retained a 30% of the initial sensitivity after the third calibration. The average capability of detection for 0.05% probabilities of false positive and negative was 26.77 ± 3.61 nM (α = 0.05 and β = 0.05, n = 3).  相似文献   

12.
Herein, an organometallic Au(III) catalyst was easily prepared via self-assembly method using chloroauric acid (HAuCl4) and cetyltrimethylammonium bromide (CTAB). The electrode fabricated by the catalyst not only shows extended anodic potential window compared to that of Au nanoparticle-based electrode, but also possess the high electrocatalytic activity in the selective oxidation of Ochratoxin A. Under optimized conditions, the modified electrode exhibits a wide linearity range from 1.0×10−7 to 1.0×10−5 mol/L and a low detection limit of 2.9×10−8 mol/L (S/N=3). Furthermore, the electrochemical sensor possesses good recoveries between 93.5 % and 98.2 % in real sample analysis, indicating high accuracy in real sample analysis.  相似文献   

13.
A double magnetic separation-assisted fluorescence method was developed to rapidly detect ochratoxin A(OTA). The OTA aptamer functionalized magnetic nanomaterial(Fe3O4-Aptanier) and complementary DNA conjugated nitrogen-doped graphene quantum dots(NGQDs-cDNA) were used in this assay. Aptamer could hybridize with cDNA, which induced tlie NGQDs-cDNA to bind onto Fe3O4-Aptamer, and resulted in the fluorescence quenching of NGQDs. After the addition of OTA, the NGQDs-cDNA could release into the solution, and resulted in the recovery of fluorescence signal of NGQDs consequently. By utilizing the magnetic separation, the unbonded NGQDs-cDNA and residual Fe3O4-Aptamer were removed, which significantly increased the fluorescence signal intensity. OTA could be detected in the linear range of 10 nmol/L to 2000 nmol/L, with a limit of detection as 0.66 mnol/L. The advantages of this method include simple operation, good selectivity and high sensitivity, and this method can be used for the rapid detection of ochratoxin A in wheat and com.  相似文献   

14.
将合成的立方体纳米氧化亚铜用于修饰玻碳电极,在其上固定葡萄糖氧化酶,构建了高灵敏的安培型葡萄糖生物传感器.采用X射线衍射(X RD)、扫描电镜(SEM)对合成的立方体纳米氧化亚铜及其修饰电极进行了表征.结果表明,合成的纳米氧化亚铜为均匀的立方体形状.采用循环伏安法(CV)、交流阻抗谱(EIS)、差分脉冲伏安法(DPV)及计时电流法(CA)考察了修饰电极的电化学行为.在含0.1 mmol/L葡萄糖的磷酸盐缓冲溶液(pH 7.4)中研究了立方体纳米氧化亚铜修饰电极的循环伏安(CV)响应,实验结果表明,此修饰电极对葡萄糖显示出良好的电催化性能.DPV响应电流与葡萄糖的浓度在5.0×10-6 ~4.0× 10-3mol/L范围内呈良好的线性关系,线性相关系数R2=0.9983,检出限为6.8×10-7 mol/L(S/N=3).CA实验结果表明,尿酸、抗坏血酸、D-果糖对传感器不产生干扰.本传感器具有较好的重现性和稳定性,可用于实际样品中葡萄糖的检测.  相似文献   

15.
《Electroanalysis》2017,29(7):1741-1748
The determination of lead ions by inhibition of choline oxidase enzyme has been evaluated for the first time using an amperometric choline biosensor. Choline oxidase (ChOx) was immobilized on a glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNT) through cross‐linking with glutaraldehyde. In the presence of ChOx, choline was enzymatically oxidized into betaine at –0.3 V versus Ag/AgCl reference electrode, lead ion inhibition of enzyme activity causing a decrease in the choline oxidation current. The experimental conditions were optimised regarding applied potential, buffer pH, enzyme and substrate concentration and incubation time. Under the best conditions for measurement of the lowest concentrations of lead ions, the ChOx/MWCNT/GCE gave a linear response from 0.1 to 1.0 nM Pb2+ and a detection limit of 0.04 nM. The inhibition of ChOx by lead ions was also studied by electrochemical impedance spectroscopy, but had a narrower linear response range and low sensitivity. The inhibition biosensor exhibited high selectivity towards lead ions and was successfully applied to their determination in tap water samples.  相似文献   

16.
In this report, a simple electrochemical biosensor has been developed for highly sensitive and specific detection of DNA based on hairpin assembly amplification. In the presence of target DNA, the biotin‐labelled hairpin H1 is opened by hybridizing with target DNA through complementary sequences. Then the opened hairpin H1 assembles with the hairpin H2 to displace the target DNA, generating H1‐H2 complex. The displaced target DNA could trigger the next cycle of hairpins assembly, resulting in the generation of numerous H1‐H2 complexes. Subsequently, the H1‐H2 complex hybridizes with the capture probe immobilized on the electrode. Finally, the streptavidin alkaline phosphatase (ST‐ALP) binds to biotin in the capture probe‐H1‐H2 complex and catalyzes the substrate α‐naphthol (α‐NP) to produce electrochemical signal. To make a more fascinating hairpin assembly amplification strategy in signal amplification, mismatched base sequences are designed in hairpin H2 to decrease non‐specific binding of the hairpin substrates. The developed biosensor achieves a sensitivity of 20 pM with a linear range from 25 pM to 25 nM, and shows high selectivity toward single‐base mismatch. Thus, the proposed electrochemical biosensor might have the potential for early clinical diagnosis and therapy.  相似文献   

17.
胡奕津  范申  黄丽珊  杨娟  张红艳 《化学通报》2022,85(10):1177-1185
赭曲霉毒素A(Ochratoxin A,OTA)是真菌产生的次级代谢产物,性质稳定,不易去除,人体摄入后将产生严重的健康危害。数十年来,核酸适配体不断发展,成为生物传感器的重要识别元件之一,适体传感器被广泛用于生物、医药、疾病等分析检测。本文总结了用于检测OTA的经典方法和基于核酸适配体的生物传感器方法,并主要从光学适配体传感器方面阐述了近年用于检测赭曲霉毒素A的适配体传感器,并对其进行了总结和展望。  相似文献   

18.
An amperometric cholesterol biosensor based on immobilization of cholesterol oxidase in a Prussian blue (PB)/polypyrrole (PPy) composite film on the surface of a glassy carbon electrode was fabricated. Hydrogen peroxide produced by the enzymatic reaction was catalytically reduced on the PB film electrode at 0 V with a sensitivity of 39 μA (mol/L)?1. Cholesterol in the concentration range of 10?5 ? 10?4 mol/L was determined with a detection limit of 6 × 10?7 mol/L by amperometric method. Normal coexisting compounds in the bio‐samples such as ascorbic acid and uric acid do not interfere with the determination. The excellent properties of the sensor in sensitivity and selectivity are attributed to the PB/PPy layer modified on the sensor.  相似文献   

19.
We report an aptamer biosensing array for thrombin detection by measuring the electrochemical impedance upon aptamer‐protein formation at the surface of CD‐trodes (GCDTs) in the presence of the redox couple [Fe(CN)6]3?/4?. GCDTs are fabricated from recordable compact discs that contain a fine gold layer. The biosensor is constructed by self‐assembling of a thiol‐modified thrombin binding aptamer (TBA) onto a GCDT surface. The sensor reveals good ligand specificity, recognition in a wide range of thrombin concentrations from 20 nM to 1 µM with a limit of detection of 5 nM.  相似文献   

20.
In this research a novel osmium complex was used as electrocatalyst for electroreduction of oxygen and H2O2 in physiological pH solutions. Electroless deposition at a short period of time (60 s), was used for strong and irreversible adsorption of 1,4,8,12‐tetraazacyclotetradecane osmium(III) chloride (Os(III)LCl2) ClO4 onto single‐walled carbon nanotubes (SWCNTs) modified GC electrode. The modified electrode shows a pair of well defined and reversible redox couple, Os(IV)/Os(III) at wide pH range (1–8). The glucose biosensor was fabricated by covering a thin film of glucose oxidase onto CNTs/Os‐complex modified electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The fabricated biosensor shows high sensitivity, 826.3 nA μM?1cm?2, low detection limit, 56 nM, fast response time <3 s and wide calibration range 1.0 μM–1.0 mM. The biosensor has been successfully applied to determination of glucose in human plasma. Because of relative low applied potential, the interference from electroactive existing species was minimized, which improved the selectivity of the biosensor. The apparent Michaelis‐Menten constant of GOx on the nanocomposite, 0.91 mM, exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this glucose biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号