首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Electroanalysis》2006,18(16):1578-1583
A dopamine (DA) polymer was deposited electrochemically on to a glassy carbon (GC) surface until the electrode surface was passivated. The DA film on the GC surface was re‐formed for high sensitivity and reproducibility by electrochemical degradation. The re‐formed electrode was sensitive and selective in the determination of DA in the presence of ascorbic acid. The linear range obtained by square‐wave voltammetry was between 0.1 and 2.1 μM (R=0.996, n=6) with a sensitivity of 1.2 μA μM?1 and a detection limit (S/N=3) of 0.04 μM. The electropolymerized DA film was stable and the re‐formed electrode was reproducible for DA determination.  相似文献   

2.
A recently synthesized conducting polymer [poly(2-dodecyl-4,7-di(thiophen-2-yl)-2H-benzo[d][1,2,3]triazole (PTBT)] was tested as a platform for biomolecule immobilization. After electrochemical polymerization of the monomer (TBT) on graphite electrodes, immobilization of glucose oxidase (GOx,β-D-glucose: oxygen-1-oxidoreductase, EC 1.1.3.4) was carried out. To improve the interactions between the enzyme and hydrophobic alkyl chain on the polymeric structure, GOx and isoleucine (Ile) amino acid were mixed in sodium phosphate buffer (pH 7.0) with a high ionic strength (250 × 10(-3) M). The solution is then casted on the polymer film, and the amino groups in the protein structure were crosslinked using glutaraldehyde (GA) as the bifunctional agent. Finally, the surface was covered with a perm-selective membrane. Consequently, cross-linked enzyme crystal (CLEC) like assembles with regular shapes were observed after immobilization. Microscopic techniques such as scanning electron microscopy (SEM) and fluorescence microscopy were used to monitor the surface morphologies of both the polymer and the bioactive layer. Electrochemical responses of the enzyme electrodes were measured by monitoring O(2) consumption in the presence of glucose at -0.7 V. The optimized biosensor showed a very good linearity between 0.05 and 2.5 × 10(-3) M with a 52 s response time and a detection limit (LOD) of 0.029 × 10(-3) M to glucose. Also, kinetic parameters, operational and storage stabilities were determined. K(m) and I(max) values were found as 4.6 × 10(-3) M and 2.49 μA, respectively. It was also shown that no activity was lost during operational and storage conditions. Finally, proposed system was applied for glucose biomonitoring during fermentation in yeast culture where HPLC was used as the reference method to verify the data obtained by the proposed biosensor.  相似文献   

3.
《Electroanalysis》2004,16(4):319-323
A sensitive and selective electrochemical method for the determination of ascorbic acid was developed. It was shown that a hydrated osmium complex‐containing redox polymer film can be electrodeposited at the gold electrode and it exhibits excellent electrocatalytic activity towards the oxidation of ascorbic acid. In contrast to a bare gold electrode, the oxidation current of ascorbic acid increased greatly and the oxidation peak potential shifted negatively to about 0.01 V (vs. SCE) at the modified electrode. Amperometric measurements were performed at an applied potential of 0.01 V and a linear response was obtained in the range of 2–400 μM with a limit of detection (LOD) of 0.6 μM (S/N=3). The interference studies showed that the modified electrode exhibits excellent selectivity in the presence of large excess of uric acid and dopamine. The proposed procedure was successfully applied to the determination of ascorbic acid in human urine samples.  相似文献   

4.
Phenolic compounds used in food industries and pesticide industry, are environmentally toxic and pollute the rivers and ground water. For that reason, detection of phenolic compounds such as catechol by using simple, efficient and cost-effective devices have been becoming increasingly popular. In this study, a suitable and a novel matrix was composed using a novel conjugated polymer, namely poly[1-(5-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophen-2-yl)furan-2-yl)-5-(2-ethylhexyl)-3-(furan-2-yl)-4H thieno[3,4-c]pyrrole-4,6(5H)-dione] (PFTBDT) and carbon dots (CDs) to detect catechol. PFTBDT and CDs were synthesized and the optoelectronic properties of PFTBDT were investigated via electrochemical and spectroelectrochemical studies. Laccase enzyme was immobilized onto the constructed film matrix on the graphite electrode. The proposed biosensor was found to have a low detection limit (1.23 μM) and a high sensitivity (737.44 μA/mM.cm−2) with a linear range of 1.25–175 μM. Finally, the applicability of the proposed enzymatic biosensor was evaluated in a tap water sample and a satisfactory recovery (96–104%) was obtained for catechol determination.  相似文献   

5.
The catalytic voltammetric protocol for the determination of titanium at a bismuth film electrode is presented. The method is based on the reduction of the Ti(IV)‐oxalate complex to Ti(III)‐oxalate in an acidic solution. It was proven that the addition of KClO3 causes rapid oxidation of Ti(III)‐oxalate and, subsequently, an increase of the reduction peak current of Ti(IV) at the bismuth film electrode. Parameters that influence the Ti response, including the film preparation, solution pH, oxalate acid and chlorate concentrations, were optimized. The exploitation of the bismuth film electrode under the optimized conditions yielded a stable response for titanium, with high sensitivity (12.5 μA μM?1), good precision (RSD=5.0%) and a low detection limit (1×10?8 M).  相似文献   

6.
Increasing attention has been paid to layered double hydroxide (LDH) film modified electrode attributing to its desirable properties for fabrication of electrochemical sensor. In this paper, the Zn‐Al LDH film modified glassy carbon electrode was characterized by electrochemical methods. The enhanced electrocatalytic currents and well‐separated potentials for epinephrine (EP) and uric acid (UA) were observed at the as‐prepared electrode. Under selected condition, the differential pulse voltammetry response of the modified electrode to EP (or UA) shows a linear concentration range of 0.5 μM to 0.3 mM (or 2 μM to 0.4 mM) in the presence of 10.0 μM UA (or 20.0 μM EP). At a signal‐to‐noise ratio of 3, the calculated limits of detection are 0.13 μM and 0.66 μM, respectively. The proposed method has been performed to successfully detect EP and UA in analysis of real samples, such as in EP injection solution and human urine samples.  相似文献   

7.
A facile green synthesis of silver nanoparticles (AgNPs) was achieved using aqueous leaf extract of Callicarpa Maingayi as a reducing and stabilizing agent during the synthesis from its salt solutions. The synthesized silver nanoparticles were analyzed with transmission electron microscopy (TEM), X‐ray diffraction (XRD) and energy dispersive spectrometer (EDS). XRD study shows that the particles are crystalline in nature with face centered cubic geometry. The crystallite size obtained from XRD is about 15 nm which is in agreement well with the TEM results. A new nanostructure sensor was constructed by immobilizing silver nanoparticles and graphene oxide (AgNPs‐GO) composite film on a glassy carbon electrode (AgNPs‐GO/GCE). It was found that the AgNPs‐GO composite exhibits good catalytic activity toward the reduction of hydrogen peroxide (H2O2), leading to an enzymeless sensor with a fast amperometric response time of less than 5 s, high selectivity, good reproducibility and stability. The linear range was 5.0 μM to 700 μM with a detection limit of 0.6 μM (S/N = 3).  相似文献   

8.
A carbon paste electrode that was chemically modified with 3-(4'-amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid (3,4-AA) was used as a selective electrochemical sensor for the detection of hydroxylamine. Cyclic voltammetry (CV), choronoamperometry (CHA) and square wave voltammetry (SWV) were used to investigate oxidation of hydroxylamine in aqueous solution. Under optimized concentration the electrocatalytic oxidation current peak for hydroxylamine increased linearly with concentration in the range of 0.025–10.0 μM. The detection limits for hydroxylamine was 0.012 μM. Finally, the modified electrode was applied to detection hydroxylamine in water samples.  相似文献   

9.
A novel method for preparation of hydrogen peroxide biosensor was presented based on immobilization of hemoglobin (Hb) on carbon‐coated iron nanoparticles (CIN). CIN was firstly dispersed in a chitosan solution and cast onto a glassy carbon electrode to form a CIN/chitosan composite film modified electrode. Hb was then immobilized onto the composite film with the cross‐linking of glutaraldehyde. The immobilized Hb displayed a pair of stable and quasireversible redox peaks and excellent electrocatalytic reduction of hydrogen peroxide (H2O2), which leading to an unmediated biosensor for H2O2. The electrocatalytic response exhibited a linear dependence on H2O2 concentration in a wide range from 3.1 μM to 4.0 mM with a detection limit of 1.2 μM (S/N=3). The designed biosensor exhibited acceptable stability, long‐term life and good reproducibility.  相似文献   

10.
《Electroanalysis》2004,16(4):289-297
The polymer film of N,N‐dimethylaniline (DMA) is deposited on the electrochemically pretreated glassy carbon (GC) electrode by continuous electrooxidation of the monomer. This poly N,N‐dimethylaniline (PDMA) film‐coated electrode can be used as an amperometric sensor of ascorbic acid (AA). The polymer film (thickness (?): 0.3±0.02 μm) having positive charge in its backbone attracts the anionic species AA. Thus, the anodic peak potential (350 mV vs. Ag|AgCl|NaCl(sat)) for the oxidation of AA at the bare electrode is largely shifted to the negative value (150 mV) at this electrode. The PDMA film‐coated electrode is stable in acidic, alkaline and neutral media and can sense AA at different pH's. The diffusion coefficients of AA in solution (D) and in film (Ds) were estimated by rotating disk electrode voltammetry: D=(5.5±0.1)×10?6 cm2 s?1 and Ds=(6.3±0.2)×10?8, (6.0±0.2)×10?8 and (4.7±0.2)×10?8 cm2 s?1 for 0.5, 1.5 and 3.0 mM AA, respectively. A permeability of AA through the PDMA film was found to decrease with increasing the concentration of AA in the solution. In the chronoamperometry, the current response for the oxidation of AA at different times elapsed after potential‐step application is linearly increased with the increase in AA concentration in a wide range of its concentration from 25 μM to 1.65 mM. In the hydrodynamic amperometry, a successive addition of 10 μM AA caused the successive increase in current response with equal amplitude and the sensitivity was calculated as 0.178 μA cm?2 μM?1. So, the fouling of the electrode surface caused by the oxidized product of AA is markedly eliminated at this PDMA film‐coated electrode. A flow injection analysis based on the present electrode was performed to estimate the concentration of vitamin C in fruit juice.  相似文献   

11.
The new iridium oxide film electrode, applied for the determination of lead(II), cadmium(II) and copper(II) traces using differential pulse anodic stripping voltammetry (DP ASV) is presented. The electrode display an interesting stripping voltammetric performance which compares with electrodes commonly used in voltammetry. The deposited film is known as anodically electrodeposited iridium oxide film (AEIROF). The AEIROF electrode is characterized by long‐term stability (more than 40 days) and very good reproducibility of the analytical signals in this time (≤12% for 0.5 μM of lead). The regeneration of iridium film is very simple in a time shorter than 60 seconds. The effects of various factors such as: thickness of AEIROF film, preconcentration potential and time, supporting electrolyte composition, potential interferences are optimized. The detection limit for AEIROF film electrode based on glassy carbon for an accumulation time of 30 s is as low as 7 nM for lead(II). The repeatability of the method at a concentration level of the lead(II) as low as 0.5 μM, expressed as RSD is 2.5% (n=10). The proposed method was successfully applied and validated by studying certified reference material CTA‐OTL‐1. Such an attractive use of ‘mercury–free’ ‐ environmentally friendly electrodes offers great promise to measure trace metals.  相似文献   

12.
An electrochemical sensor for metronidazole (MTZ) was built via the surface modification of a carbon paste electrode (CPE) by a film obtained through electropolymerization of α‐cyclodextrin (CPEα‐CD). The CPEα‐CD was characterized by cyclic voltammetry (CV) and atomic force microscopy (AFM), by both techniques was demonstrated that the polymer film is coating the electrode surface. The electroreduction behaviour of MTZ in HClO4 media as a supporting electrolyte was studied by differential‐pulse voltammetric (DPV) technique. The DPV electrochemical process was observed to be diffusion controlled and irreversible. Under optimal conditions, the peak current was proportional to MTZ concentration in the range of 0.5 to 103.0 μM with a detection limit of 0.28±0.02 μM. The method was successfully applied to quantify of MTZ in pharmaceutical formulations. In addition, this proposed MTZ sensor exhibited good reproducibility, long‐term stability and fast current response.  相似文献   

13.
《Electroanalysis》2004,16(21):1806-1813
A highly sensitive amperometric glucose biosensor based on immobilizing glucose oxidase in electropolymerized poly(o‐phenylenediamine) film on glassy carbon electrode coated sequentially with copper and palladium layers has been developed. The steady‐state amperometric response to glucose was determined by means of the oxidation of hydrogen peroxide generated by the enzymatic reaction at a potential of either +0.70 or +0.40 V (vs. Ag|AgCl reference). The deposited copper/palladium layer showed great enhancement in the performance of the enzyme electrode, possibly due to its better electrocatalytic activity for hydrogen peroxide oxidation and large surface area. Effects of the relative loading of palladium, enzyme and polymer on the electrode performance were examined in detail. Sensitivity and detection limit for glucose determinations at +0.70 V were about 7.3 μA/mM and 0.1 μM, respectively. A wide linear range up to 6.0 mM glucose could be achieved. Electrode performance was superior to similar works reported in the literature. The response time was less than 2 s and its lifetime was longer than three months. The permeable polyphenylenediamine film also offered good anti‐interference ability to ascorbic acid, uric acid and acetaminophen, especially when a detection potential of +0.40 V was employed.  相似文献   

14.
The electrocatalytic oxidation of sulfite has been studied at a stable electroactive thin film of copper‐cobalt hexacyanoferrate (CuCoHCF) hybrid electrodeposited on a carbon paste electrode (ECMCPE). A linear range of 5 μM to 5 mM of sulfite, with an experimental detection limit of 1 μM, was obtained using the cyclic voltammetric method. The oxidation of sulfite showed no significant fouling effect on the modified electrode surface at sulfite concentrations below 5 mM. The proposed modified electrode exhibited several attractive features, including simple preparation, fast response, good stability and repeatability, and could be applied to sulfite determination in real samples.  相似文献   

15.
《Electroanalysis》2005,17(24):2217-2223
Glassy carbon electrode modified by microcrystals of fullerene‐C60 mediates the voltammetric determination of uric acid (UA) in the presence of ascorbic acid (AA). Interference of AA was overcome owing to the ability of pretreated fullerene‐C60‐modified glassy carbon electrode. Based on its strong catalytic function towards the oxidation of UA and AA, the overlapping voltammetric response of uric acid and ascorbic acid is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents under conditions of both linear sweep voltammetry (LSV) and Osteryoung square‐wave voltammetry (OSWV). At pH 7.2, a linear calibration graph is obtained for UA in linear sweep voltammetry over the range from 0.5 μM to 700 μM with a correlation coefficient of 0.9904 and a sensitivity of 0.0215 μA μM?1 . The detection limit (3σ) is 0.2 μM for standard solution. AA in less than four fold excess does not interfere. The sensitivity and detection limit in OSWV were found as 0.0255 μA μM?1 and 0.12 μM, for standard solution respectively. The presence of physiologically common interferents (i.e. adenine, hypoxanthine and xanthine) negligibly affects the response of UA. The fullerene‐C60‐modified electrode exhibited a stable, selective and sensitive response to uric acid in the presence of interferents.  相似文献   

16.
A novel nanocomposite of colloidal gold (GNPs) and hydroxyapatite nanotubes (Hap) was prepared for immobilization of a redox protein, hemoglobin (Hb), on glassy carbon electrode. The immobilized Hb showed fast direct electron transfer and excellent electrocatalytic behavior toward reduction of hydrogen peroxide. A synergic effect between GNPs and Hap for accelerating the surface electron transfer of Hb was observed, which led to a pair of redox peaks with a formal potential of (?340±2) mV at pH 7.0, and a new biosensor for hydrogen peroxide with a linear range from 0.5 to 25 μM and a limit of detection of 0.2 μM at 3σ. Owing to the good biocompatibility of the nanocomposite, the biosensor exhibited good stability and acceptable reproducibility. The as‐prepared nanocomposite film provided a good matrix for protein immobilization and biosensor preparation.  相似文献   

17.
This study presents a new electrochemical sensor (NiO−ERGO/SPE) for sensitive and selective detection of epinephrine (EPI) on the screen-printed electrode (SPE) which is modified with a nanocomposite film consisting of electrochemically reduced graphene oxide and NiO nanoparticles. After surface functionalization, structural and electrochemical characterization of NiO−ERGO film, DPV signals of NiO−ERGO/SPE towards the oxidation of EPI exhibited a linear correlation in the concentration range of 0.025 μM to 175 μM with a detection limit of 0.015 μM, which reveals NiO−ERGO film is manifested a good electrocatalytic activity for EPI detection compared with the previous reports. The selectivity of NiO−ERGO film was also tested on a very wide scale of possible interferents (ascorbic acid, uric acid, dopamine, lactic acid, phenylalanine, tyrosine, tryptophan, Li+, Na+, K+, Ca2+, and Zn2+). Moreover, to evaluate the applicability of the proposed sensor for real sample analysis, NiO−ERGO/SPE was successfully utilized for the determination of EPI in pharmaceutical samples.  相似文献   

18.
《Electroanalysis》2006,18(24):2458-2466
A promising electrochemical biosensor was fabricated by electrochemical grafting of ribonucleic acid (RNA) at 1.8 V (vs. SCE) on glassy carbon electrode (GCE) (denoted as RNA/GCE), for simultaneous detection of dopamine (DA) and uric acid (UA) with coexistence of excess amount of ascorbic acid (AA). The electrode was characterized by X‐ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The RNA modified layer on GCE exhibited superior catalytic ability and anionic exclusive ability in comparison with the DNA modified electrode. Three separated anodic DPV peaks were obtained at 0.312, 0.168 and ?0.016 V for UA, DA and AA, respectively, at the RNA/GCE in pH 7.0 PBS. In the presence of 2.0 mM AA, a linear range of 0.37 to 36 μM with a detection limit of 0.2 μM for DA, and in the range of 0.74 to 73 μM with a detection limit of 0.36 μM for UA were obtained. The co‐existence of 5000 fold AA did not interfere with the detection of DA or UA. The modified electrode shows excellent selectivity, good sensitivity and good stability.  相似文献   

19.
A preanodized screen‐printed ring disk carbon electrode was applied to the determination of chloramphenicol (Ph? NO2, CAP) by flow injection analysis (FIA). By setting up the first irreversible reduction reaction of Ph? NO2 to Ph? NHOH at the disk electrode, the following reversible oxidation of hydroxylamine (Ph? NHOH) to the nitroso (Ph? NO) derivative can be monitored/collected at the ring electrode for CAP analysis. The interference from dissolved oxygen and others can thus be avoided by using this approach and precise CAP determination can be easily performed by FIA under aerobic conditions. Preanodization treatment helps to lower the overpotential of the electrochemical reaction of CAP and favors the selective detection in aqueous medium. Under the optimum conditions, ten repetitive determinations at 1 μM and 10 μM CAP resulted in relative standard deviations of less than 4%, indicating good reproducibility of the system. A linear calibration range of 0.1–20 μM with a detection limit of 0.074 μM (S/N=3) was obtained. Veterinary pharmaceutics were finally analyzed by this sensor to validate its practical applicability.  相似文献   

20.
A graphite nanosheet (GNS)‐Nafion modified glassy carbon (GC) electrode was prepared and used for highly sensitive and selective determination of dopamine (DA). The GNS‐Nafion/GC electrode displayed excellent electrocatalytic activities towards DA and ascorbic acid (AA). The selective determination of DA was carried out successfully in the presence of AA by differential pulse voltammetry. High sensitivity (3.695 μA μM?1) and low detection limit (0.02 μM, S/N=3) for the DA detection were obtained. These good properties can be attributed to a large amount of edge plane defects presented on GNSs and the charge‐exclusion and concentration features of Nafion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号