首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(4):1069-1080
In this study, we introduce a very sensitive and selective method for the differential pulse anodic stripping determination of Sb(III) ion on the over‐oxidized poly(phenol red) modified glassy carbon electrode (PPhRedox/GCE) in 0.1 mol L‐1 HCl medium. The formation of both poly(phenol red) and over‐oxidized poly(phenol red) film on the electrode surfaces were characterized by electrochemical impedance spectroscopy, X‐ray photoelectron spectroscopy and scanning electron microscopy techniques. An anodic stripping peak of Sb(III) was observed at 0.015 V on the PPhRedox/GCE. Higher anodic stripping peak current of Sb(III) was obtained at PPhRedox/GCE compared with both bare GCE and poly(phenol red) film modified GCE (PPhRed/GCE). The calibration graph consisted of two linear segments of 0.044 ‐ 1.218 μg L−1 and 3.40 – 18.26 μg L−1 with a detection limit of 0.0075 μg L−1. The proposed over‐oxidized polymer film modified electrode was applied successfully for the analysis of antimony in different spiked water samples. Spiked recoveries for water samples were obtained in the range of 93.0–103.0%. The accuracy of the method was also verified through the analysis of standard reference materials (SCP SCIENCE‐EnviroMAT™ EP−L‐2).  相似文献   

2.
A new and simple photoelectrochemical (PEC) sensor using a glassy carbon electrode (GCE) modified with bismuth vanadate (BiVO4) nanoparticles and dihexadecyl phosphate (DHP) film was useful for acetaminophen (AC) determination. In 0.2 mol L−1 phosphate buffer (pH=9), the GCE without modification exhibited the smaller photocurrent (0.86 μA) when compared with GCE modified with 1.0 mg mL−1 or 2.0 mg mL−1 BiVO4 nanoparticles suspension (5.9 and 34 μA, respectively). Based on the photocurrent signal generated through the interaction between GCE, BiVO4 and the energy of visible light a chronoamperometric method for AC determination was developed. The AC linear range concentration from 0.099 to 0.99 μmol L−1 and limits of detection and quantification of 0.027 and 0.091 μmol L−1, respectively, was obtained. The proposed method was applied to the AC determination in commercial drugs and tap water with satisfactory accuracy and precision. Moreover, the PEC construction was easy and had a short response time, which might confer higher sample throughput for the method.  相似文献   

3.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

4.
This work presents, for the first time, the voltammetric behavior of clonidine (CLO) drug and its determination, using an unmodified glassy carbon electrode (GCE). CLO exhibited only an irreversible oxidation process on the GCE, with peak potential at +0.85 V in pH 12 (vs Ag/AgCl). CLO oxidation process is pH-dependent and the electrochemical mechanisms on the GCE were proposed in acidic and basic medium. The determination of CLO was optimized in 0.1 mol L−1 phosphate buffer solution at pH 12.0 using differential pulse voltammetry (DPV), which provides a good linear range (0.65 to 106.00 μmol L−1) and low theoretical limit of detection (0.14 μmol L−1) for the quality control of this drug in pharmaceutical samples. In addition, stable responses of CLO at the GCE were obtained in the same day (RSD = 3.4 %; n = 5) and different days (RSD = 2.0 %; n = 3). Moreover, the determination of CLO in a pharmaceutical formulation using the proposed GCE-DPV method presented good accuracy, since the recovery was close to 100 % and the dosing result was in agreement with an official method (HPLC-UV). The proposed method demonstrates a good analytical performance for CLO determination in pharmaceutical samples, providing a faster, simpler and lower-cost alternative for quality control of CLO than other reported methods.  相似文献   

5.
A new electrochemical sensor based on a carbon nanotube paste electrode modified with a Santa Barbara Amorphous material (SBA-15) decorated with silver nanoparticles, namely CNT/SBA/Ag-PE, was developed. It was successfully applied for individual and simultaneous determination of both paracetamol (PC) and sulfamethoxazole (SMZ) medicines. The electrode exhibited a linear dynamic range of 0.12–110 μmol L−1 for paracetamol and 0.06–70 μmol L−1 for sulfamethoxazole, and detection limits of 38 and 19 nmol L−1, respectively. The proposed sensor offered high sensitivity, fast response time and the potential for detecting both drugs simultaneously. The CNT/SBA/Ag-PE enabled the simultaneous determination of PC and SMZ in urine samples with high recovery rates.  相似文献   

6.
《Electroanalysis》2018,30(9):1946-1955
In this paper, a rapid and sensitive modified electrode for the simultaneous determination of hydroquinone (HQ) and bisphenol A (BPA) is proposed. The simultaneous determination of these two compounds is extremely important since they can coexist in the same sample and are very harmful to plants, animals and the environment in general. A carbon paste electrode (CPE) was modified with silver nanoparticles (nAg) and polyvinylpyrrolidone (PVP). The PVP was used as a reducing and stabilizing agent of nAg from silver nitrate in aqueous media. The nAg‐PVP composite obtained was characterized by transmission electron microscopy and UV‐vis spectroscopy. The electrochemical behavior of HQ and BPA at the nAg‐PVP/CPE was investigated in 0.1 mol L−1 B−R buffer (pH 6.0) using cyclic voltammetry (CV) and square wave voltammetry (SWV). The results indicate that the electrochemical responses are improved significantly with the use of the modified electrode. The calibration curves obtained by SWV, under the optimized conditions, showed linear ranges of 0.09–2.00 μmol L−1 for HQ (limit of detection 0.088 μmol L−1) and 0.04–1.00 μmol L−1 for BPA (limit of detection 0.025 μmol L−1). The modified electrode was successfully applied in the analysis of water samples and the results were comparable to those obtained using UV‐vis spectroscopy.  相似文献   

7.
《Electroanalysis》2017,29(4):1154-1160
Oxidation and reduction processes of the insecticide fenthion was comparatively investigated at a reduced graphene oxide modified glassy carbon electrode (RGO‐GCE) and a cyclic renewable silver amalgam film electrode (Hg(Ag)FE) using square wave stripping voltammetry (SWSV). The influence of pH and SW parameters was investigated. The linear concentration ranges were found to be 1 × 10−6 – 2 × 10−5 and 1 × 10−7 – 2 × 10−5 mol L−1 for Hg(Ag)FE and RGO‐GCE, respectively. The detection and quantification limits were calculated as 1.3 × 10−7 and 4.5 × 10−7 mol L−1 for Hg(Ag)FE and 7.6 × 10−9 and 2.5 × 10−8 mol L−1 for RGO‐GCE. Both of the developed electroanalytical methods offer rapid and simple detection of fenthion and were used on spiked tap and river water and apple juice samples. Scanning electron microscopy was used for RGO‐GCE surface characterization.  相似文献   

8.
A system of Pt nanoparticles and poly(ortho‐phenylenediamine) film electrochemically deposited onto a glassy carbon electrode (GCE/PoPD/Pt) was fabricated. Scanning electron microscopy, Fourier‐transform infrared spectroscopy, and atomic force microscopy techniques were used to identify the surface characteristics of the composite electrode. The conductive polymers and Pt nanoparticles together resulted in a synergistic effect, and the new formed surface was highly active against polyphenolic structures. Rosmarinic acid (RA) and protocatechuic acid (PCA) are phenolic compounds found in plants, and they are used in many applications, particularly as pharmaceuticals. The GCE/PoPD/Pt was used for the simultaneous determination of RA and PCA in a pH 2.0 H2SO4 solution for the first time. The RA and PCA concentrations were determined using differential pulse voltammetry (DPV) and chronoamperometry. By the amperometry measurement, for RA and PCA, a linear relation was observed in the concentration ranges of 1–55 μmol L?1 and 1–60 μmol L?1, with detection limits of 0.5 μmol L?1 and 0.6 μmol L?1, respectively. In the simultaneous determination with DPV, the detection limits for both RA and PCA were calculated as 0.7 μmol L?1. The GCE/PoPD/Pt was successfully used for the simultaneous determination of RA and PCA in a real sample, and its accuracy was verified by high‐performance liquid chromatography studies.  相似文献   

9.
An activated carbon nanopowder modified glassy carbon electrode (AC-GCE) was constructed for the sensitive determination of methyl parathion by adsorptive differential pulse anodic stripping voltammetry. The simple and rapid modification procedure included only drop-coating the electrode surface with a laponite stabilized activated carbon nanopowder suspension and drying. The modifier high adsorption ability, combined with its large electroactive surface area allowed a 30-fold signal increase to be achieved, compared to bare GCE. Under optimized experimental conditions (activated carbon to laponite ratio, pH and accumulation time), the AC-GCE exhibited a linear response to methyl parathion in two concentration ranges: from 0.01 μmol L−1 to 1 μmol L−1 and from 1 μmol L−1 to 6 μmol L−1. The LOD of 2.5 nmol L−1 (S/N=3) achieved fitted with regulatory norms. It was demonstrated that the as-prepared AC-GCE is suitable for routine real samples analysis.  相似文献   

10.
Within this paper, a glassy carbon electrode modified with single‐walled carbon nanotubes (SWCNTs?GCE) was prepared, and employed for the determination of clorsulon (Clo), which is a frequently used veterinary drug against common liver fluke. The comprehensive topographical and electrochemical characterizations of bare GCE and SWCNTs?GCE were performed by atomic force microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Significantly enhanced electrochemical characteristics of SWCNTs?GCE toward a ferrocyanide/ferricyanide redox couple was observed when compared to bare GCE. Further, the prepared sensor was applied for the voltammetric determination of Clo, which was electrochemically investigated for the first time in this work. Voltammetric experiments were performed using square‐wave voltammetry with optimized parameters in phosphate buffer solution, pH 6.8, which was selected as the most suitable medium for the determination of Clo. The corresponding current at approx. +1.1 V increased linearly with Clo concentration within two linear dynamic ranges of 0.75–4.00 μmol L?1 (R2=0.9934) and 4.00–15.00 μmol L?1 (R2=0.9942) with a sensitivity for the first calibration range of 0.76 μA L μmol?1, a limit of detection of 0.19 μmol L?1, and a limit of quantification of 0.64 μmol L?1. The developed method was subsequently applied for quantitative analysis of Clo in milk samples with results proving high repeatability and recovery.  相似文献   

11.
Simple and rapid voltammetric method for simultaneous determination of all-trans-retinyl acetate (RAc) or all-trans-retinyl palmitate (RPa) and α-tocopheryl acetate (α-TOAc) has been proposed. The respective method was based on the anodic oxidation of the compounds of interest by square-wave voltammetry in acetone with 0.1 mol L−1 LiClO4 at the glassy carbon electrode. The procedure was also beneficial with respect to simple dissolution of sample directly in the supporting electrolyte. The all-trans-retinyl acetate could be quantified in two linear ranges (3.1–140 μmol L−1 and 140–400 μmol L−1) and α-tocopheryl acetate in linear range 5.3–400 μmol L−1 with detection limits of 0.9 μmol L−1 RAc (or 0.8 μmol L−1 RPa) and of 1.6 μmol L−1 α-TOAc. Selected commercial cosmetic products were analysed achieving satisfactory recoveries.  相似文献   

12.
We report the application of an electrochemical sensor based on gold-copper metal-organic framework immobilized on the surface of a glassy carbon electrode to the detection of captopril (CAP), an angiotensin-converting enzyme inhibitor. Cyclic voltammetric studies showed that the joint action of gold nanoparticles and copper-1,3,5-benzenetricarboxylate (Cu−BTC) enhanced the electrochemical response to the Cu-captopril complex that is adsorbed onto the surface of the electrode. Release of gold nanoparticles from Au@Cu−BTC not only increased the conductivity of the electrode but also provided a more favorable environment for the deposition of reduced Cu that is catalytically renewed on the electrode surface. The anodic current of the Cu(II)−CAP oxidation peak varied linearly within two concentration ranges, namely 0.5 to 7.0 μmol L−1 and 10 to 2500 μmol L−1, with a limit of detection of 0.047 μmol L−1. The mean recovery for the determination of captopril in commercial tablets was 100.3 % suggesting that the method has considerable potential for future industrial applications.  相似文献   

13.
A laponite modified carbon paste electrode was prepared, characterized and applied for the 2,4-dichlorophenol (2,4-DCP) voltammetric determination. It takes advantage of the ability of laponite to adsorb phenols, as well as of its availability and very low cost. Kinetic and equilibrium data for 2,4-DCP adsorption by laponite in aqueous dispersions demonstrated that the adsorption process obeyed a pseudo first order kinetic model and was consistent with the formation of adsorbed multilayers on a surface with heterogeneous pore distribution. The composite paste electrode exhibited a heterogeneous surface with 65 % increased surface area and 27 % enhanced catalytic activity compared to the unmodified one. The adsorptive stripping voltammetric determination of 2,4-DCP at an electrode with an optimized graphite:laponite ratio of 55 : 15 w% using a 3 min accumulation time at pH 5.5 was found to be suitable for its quantification in the linear concentration range extended up to 50 μmol L−1 with a sensitivity of 0.56 μA L μmol−1 and a LOD of 0.2 μmol L−1 (S/N=3).The 2,4-DCP electrochemical response was not affected by the presence of some structurally similar phenols, like catechol and p-nitrophenol, while resorcinol, 2-chlorophenol, and 4-chlorophenol presented interferences. The results were validated by 2,4-DCP determination in spiked tap water.  相似文献   

14.
We report a simple and sensitive voltammetric sensor for the determination of chlorpromazine (CPZ) based on Ni?Al layered double hydroxide (NiAlLDH) modified glassy carbon electrode (GCE). NiAlLDH was simply electrodeposited on GCE surface in a very short time. The response linear range was 1×10?3–1×10?9 mol L?1, with a detection limit of 1×10?9 mol L?1. The NiAlLDH film showed well defined and well separate peaks for dopamine, ascorbic acid, uric acid and CPZ in the same solution. The proposed electrode was used to measure the active pharmaceutical ingredient of CPZ tablet as a real sample.  相似文献   

15.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

16.
A novel synthesized tetraamino cobalt(II) phthalocyanine monomer was used for the fabrication of a sensor by electrochemical polymerization. A disposable electrochemical sensor based on the use of a screen printed carbon electrode covered with an electropolymerized film of tetraamino cobalt(II) phthalocyanine for the determination of L-dopa in pharmaceutical tablets and biological samples was described. Cyclic voltammetry and electrochemical impedance spectroscopy were performed for the characterization of the bare and modified electrode. For the electrochemical detection of L-dopa differential pulse voltammetry was used. The proposed method exhibits a good response towards electrooxidation of L-dopa in the linear concentration range: from 0.1 to 1000.0 μmol L−1 in BRB pH=2.0, with a detection limit of 0.03 μmol L−1 and from 1 to 1000 μmol L−1 in PBS pH=7.4, with a detection limit of 0.33 μmol L−1. Due to the fact that the developed sensor was applied in two different types of real samples, two buffer media were used, BRB pH=2.0 for pharmaceutical and urine samples and PBS pH=7.4 for whole blood samples. The proposed pCoTAPc/SPCE was successfully applied for the determination of L-dopa in pharmaceutical tablets, urine and in whole blood samples with satisfactory results.  相似文献   

17.
An effective electrochemical sensor was constructed using an unmodified boron-doped diamond electrode for determination of genistein by square-wave voltammetry. Cyclic voltammetric investigations of genistein with HClO4 solution indicated that irreversible behavior, adsorption-controlled and well-defined two oxidation peaks at about +0.92 (PA1) & +1.27 V (PA2). pH, as well as supporting electrolytes, are important in genistein oxidations. Quantification analyses of genistein were conducted using its two oxidation peaks. Using optimized experiments as well as instrumental conditions, the current response with genistein was proportionately linear in the concentrations range of 0.1 to 50.0 μg mL−1 (3.7×10−7−1.9×10−4 mol L−1), by the detection limit of 0.023 μg mL−1 (8.5×10−8 mol L−1) for PA1 and 0.028 μg mL−1 (1.1×10−7 mol L−1) for PA2 in 0.1 mol L−1 HClO4 solution (in the open circuit condition at 30 s accumulation time). Ultimately, the developed method was effectively applied to detect genistein in model human urine samples by using its second oxidation peak (PA2).  相似文献   

18.
It is significant to develop a point-of-care testing (POCT) method for rapid detection of medicinal molecules. In this paper, a graphdiyne (GDY)-ionic liquid (IL) composite was prepared via one-step facile ultrasound preparation process and then modified on gold (Au) electrode surface by simple casting method. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of GDY-IL composite. Cyclic voltammetric results proved that GDY-IL composite on the electrode surface could effectively improve electron transfer rate, which meant that GDY-IL composite had high conductivity with big surface area. Finally, the modified electrode exhibited excellent performances for rutin detection with wider linear range (8.0×10−9 mol L−1–2.0×10−6 mol L−1 and 2.0×10−6 mol L−1–1.5×10−4 mol L−1) and lower detection limit (2.7 nmol L−1, 3S0/S). The Nafion/GDY-IL/Au electrode showed good sensitivity and high selectivity, which was satisfactory in analytical application to real samples. Therefore, the GDY-IL composite modified electrode has the potential applications in the POCT for electrochemical analysis of various medicinal molecules.  相似文献   

19.
The electrochemical behaviour of dopamine (DA) at a cleaned and alumina polished glassy carbon electrode (GCE) was studied using cyclic voltammetry (CV). The CV studies revealed that alumina polished GCE (AGCE) shows an enhanced oxidation peak current response with 217 mV negative potential shift towards DA than that of cleaned GCE. The differential pulse voltammetry result shows that the AGCE detects the DA in the linear concentration ranges from 0.15 to 25.25 µmol L?1. The limit of detection was calculated as 0.046 µmol L?1 with a sensitivity of 3.74 µA µmol L?1 cm?2 for the determination of DA. The fabricated AGCE shows a satisfactory selectivity, practicality along with appreciable repeatability and reproducibility.  相似文献   

20.
A square-wave voltammetric method was developed for the determination of creatinine using glassy carbon electrode functionalized multi-walled carbon nanotubes and doped with copper. Since the creatine-creatinine balance is dependent on pH, the linear responses at either pH 4.0 or 7.0 were evaluated allowing versatility in application, covering analyte concentration from limit of quantification (0.3 μmol L−1) up to 1.200 μmol L−1 (pH 4) or 660 μmol L−1 (pH 7). Electrode is simple to prepare and robust for routine analysis and it was used for the determination of creatinine in urine after simple thin-layer separation procedure to avoid interference from creatine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号