首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S.A.Khan  Z.Wazir 《中国物理 B》2013,22(2):25201-025201
It is shown that rarefactive-type double layer structures exist in ultradense electron-positron plasma.For this purpose,an extended Korteweg de Vries equation is derived and solved analytically in the low amplitude limit by employing the appropriate fluid equations.A strong influence of quantum degeneracy pressure of electrons and positrons,quantum diffraction effects and concentration of background positive ions on double layer is noticed.It is also pointed out that the amplitude and steepness of the double layer increases with an increase in ion concentration or ion charge number.The results are examined numerically for some interesting cases of dense plasmas with illustrations.  相似文献   

2.
The nonlinear electrostatic drift waves are studied using quantum hydrodynamic model in dusty quantum magnetoplasmas. The dissipative effects due to collisions between ions and dust particles have also been taken into account. The Korteweg-de Vries Burgers (KdVB) like equation is derived and analytical solution is obtained using tanh method. The limiting cases of KdV type solitary waves, Burger type monotonic shock waves and oscillatory shock solutions are also presented. It is found that both hump and dip type solitary structures are possible in quantum dusty plasmas. However, amplitude and width of the nonlinear structure depend on the dust charge polarity and its concentration in electron-ion quantum plasmas. The monotonic shock like structure is independent of the quantum parameter. It is found that shock strength is increased in the presence of positively charged particles in comparison with negatively charged dust particles. The oscillatory shock structures are also obtained and it is found that change in dust charge polarity only shifts the phase of the oscillatory shock in plasmas. The numerical results are also presented for illustration.  相似文献   

3.
Overtaking collisions of oblique isothermal ion-acoustic multisolitons are studied in an ultra-relativistic degenerate dense magnetoplasma, containing non-degenerate inertial warm ions and ultra-relativistic degenerate inertialess electrons and positrons. A non-linear Korteweg-de Vries (KdV) equation describing oblique isothermal ion-acoustic solitons (OIIASs) in such a plasma model is derived. By applying Hirota's bilinear method (HBM), the overtaking collisions of oblique isothermal ion-acoustic multisoliton solutions are investigated. An in-depth discussion shows that the amplitude, the width, and the phase shift of isothermal ion-acoustic multisolitons increase as the obliqueness and the chemical potential of electrons increase. The deviation of the trajectories decreases with increasing concentration of fermions and the ion cyclotron frequency. The present finding of this study is applicable in compact objects, such as white dwarfs and neutron stars, having degenerate ultra-relativistic dense electrons and positrons.  相似文献   

4.
《Physics letters. A》2020,384(13):126257
The propagation of electrostatic ion-acoustic cnoidal waves (IACWs) and solitons in a degenerated electron-positron-ion plasma with cold inertial ions and Thomas-Fermi distributed electrons and positrons is investigated. Adopting a reductive perturbation technique (RPT), the Korteweg-de Vries (KdV) equation is obtained and its cnoidal waves (CWs) solution is analyzed. The plasma configuration parameters (namely, the positron concentration and the Fermi temperature ratio of electron-to-positron) are shown to affect remarkably the dynamical characteristics of IACWs and solitons. The relevance of the present work to superdense white dwarfs is pointed out.  相似文献   

5.
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.  相似文献   

6.
《Physics letters. A》2019,383(27):125853
Numerical study of the effect of dust particle concentration on the thermophoretic force acting on a dust particle inside a dust structure in plasma has been carried out. The experimental data on the formation of voids in dust structures formed by 2.55 μm dust particles in a glow dc discharge in neon have been used. The simulation has been performed using the diffusion-drift model with taking into account joule heating of discharge. The dependence of the thermophoretic force acting on a dust particle in a dust structure on the ratio of atom mean free path to the distance between the adjacent particles in the dust structure has been obtained.  相似文献   

7.
The nonlinear features of two-dimensional ion acoustic(IA) solitary and shock structures in a dissipative electron-positron-ion(EPI) quantum plasma are investigated. The dissipation in the system is taken into account by incorporating the kinematic viscosity of ions in plasmas. A quantum hydrodynamic(QHD) model is used to describe the quantum plasma system. The propagation of small but finite amplitude solitons and shocks is governed by the Kadomtsev-Petviashvili-Burger(KPB) equation. It is observed that depending on the values of plasma parameters(viz.quantum diffraction, positron concentration, viscosity), both compressive and rarefactive solitons and shocks are found to exist. Furthermore, the energy of the soliton is computed and possible solutions of the KPB equation are presented numerically in terms of the monotonic and oscillatory shock profiles  相似文献   

8.
The longitudinal response functions are used to generalize the dispersion properties of electron acoustic waves (EAWs) in the presence of quantum recoil, for isotropic, non‐relativistic, degenerate/non‐degenerate plasmas. In order to study the EAWs, the constituents of non‐degenerate (thermal) plasma are considered to be of two groups of electrons having different number density and temperature, namely the cold electrons and the hot electrons. Similarly in degenerate (Fermi) plasma the two population of electrons are considered to be the thinly populated and the thickly populated electrons. The sparsely populated electrons are termed as cold electrons while the densely populated ones are termed as hot electrons. The ions are stationary which form the neutralizing background. The absorption coefficients for Landau damping with the inclusion of the quantum recoil in both plasmas are calculated and discussed. The results are discussed in the context of laser‐produced plasma.  相似文献   

9.
通过对系统施加不同的非线性作用,利用量子关联的几何度量,研究了三个qubit体系中的两体量子关联.不同的非线性相互作用模型都能使系统产生最大值为0.1752的量子关联.z方向的横场对量子关联的优化有控制作用,对于三个模型,通过调节z方向的横场,系统能产生最大值为0.09645的平均量子关联.最佳组合的三个横场,不仅能够大幅度提高量子关联的振荡周期,使得两qubit长时间处于量子关联态,而且还能够提高两qubit的平均量子关联.  相似文献   

10.
运用量子态变换的方法论证了两个qubit纯态中量子关联与纠缠的等价性.并利用三种带有横场的非线性相互作用模型研究了两个qubit体系中的量子关联.发现合适的横场对于最大量子关联态的获得、平均量子关联的提高都有着积极的作用.两个qubit体系获得最大量子关联时,不同模型,不同的横场,对应的量子态却各不相同.  相似文献   

11.
The study of wave propagation in periodic systems is at the frontiers of physics, from fluids to condensed matter physics, and from photonic crystals to Bose-Einstein condensates. In optics, a typical example of periodic system is a closely-spaced waveguide array, in which collective behavior of wave propagation exhibits many intriguing phenomena that have no counterpart in homogeneous media. Even in a linear waveguide array, the diffraction property of a light beam changes due to evanescent coupling between nearby waveguide sites, leading to normal and anomalous discrete diffraction. In a nonlinear waveguide array, a balance between diffraction and self-action gives rise to novel localized states such as spatial “discrete solitons” in the semi-infinite (or total-internal-reflection) gap or spatial “gap solitons” in the Bragg reflection gaps. Recently, in a series of experiments, we have “fabricated” closely-spaced waveguide arrays (photonic lattices) by optical induction. Such photonic structures have attracted great interest due to their novel physics, link to photonic crystals, as well as potential applications in optical switching and navigation. In this review article, we present a brief overview on our experimental demonstrations of a number of novel spatial soliton phenomena in light-induced photonic bandgap structures, including self-trapping of fundamental discrete solitons and more sophisticated lattice gap solitons. Much of our work has direct impact on the study of similar discrete phenomena in systems beyond optics, including sound waves, water waves, and matter waves (Bose-Einstein condensates) propagating in periodic potentials.   相似文献   

12.
卫青  王奇  施解龙 《物理学报》2003,52(7):1645-1649
对在对数型非线性介质中空间灰孤子的存在性进行了研究,认为对数型非线性介质中可以同 时支持暗和灰空间孤子态.并对暗空间孤子的宽度变化作了分析,指出当峰值功率较低时, 束宽随功率的增大而急剧减小,表现出良好的非线性效应;当峰值功率逐渐增大时,束宽的 减小趋势逐渐放慢直至趋于停止. 关键词: 空间暗孤子 空间灰孤子 对数型非线性介质  相似文献   

13.
The physical features exhibited by Hermite--Gaussian (HG) beams propagating in nonlocal nonlinear media with Gaussian-shaped response are discussed with an approximate variational method. Using direct numerical simulations, we find that the beam properties in the normalized system are different with the change of the degree of nonlocality. It is shown that initial HG profiles break up into several individual beams with propagation when the degree of nonlocality $\alpha$ is small. HG beams can propagate stably when $\alpha$ is large enough.  相似文献   

14.
应用多光子非线性Compton散射模型、横等离激元色散方程和Karpman方法,研究了Compton散射对横等离激元与对等离子体作用特性的影响,提出了将入射超强激光和Compton散射作为横等离激元与对离子等离子体非线性作用新机制,给出了横等离激元非线性控制方程、等离激元数和能量公式。结果表明:与散射前相比,Compton散射使等离子体密度发生剧烈扰动,高频横等离激元与低密度扰动耦合非线性增强,导致横等离激元落入低密度区的几率增大。等离子体非线性频移和高密度区能量增加,低密度区能量减小,导致横等离激元电场包络迅速坍塌,等离激元数增加,场强度更强。  相似文献   

15.
This paper studies numerically the dark incoherent spatial solitons propagating in logarithmically saturable nonlinear media by using a coherent density approach and a split-step Fourier approach for the first time. Under odd and even initial conditions, a soliton triplet and a doublet are obtained respectively for given parameters. Simultaneously, coherence properties associated with the soliton triplet and doublet are discussed. In addition, if the values of the parameters are properly chosen, five and four splittings from the input dark incoherent spatial solitons can also form. Lastly, the grayness of the soliton triplet and that of the doublet are studied, in detail.  相似文献   

16.
A rigorous theoretical investigation has been conducted on solitary self-gravitational potential structures in a magnetized degenerate quantum plasma system (containing heavy nuclei and degenerate electrons). The reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV) equation, which admits a solitary wave solution for small but finite amplitude limit. It has been shown, for the first time, that the periodic U-shaped structures represented by secant square function [Asaduzzaman et al, Physics of Plasmas, 24 , 052102 (2017)] are converted into solitary self-gravitational potential structures represented by hyperbolic secant square function due to the presence of a static external magnetic field. It is also observed that the effects of the static external magnetic field and obliqueness significantly modify the basic properties (viz. amplitude, width, speed, etc.) of the solitary self-gravitational potential structures.  相似文献   

17.
Principles of development of the quantum theory of nonlinear processes on the basis of Lagrangian formulation are discussed. It is shown that in the framework of this formulation it is possible to preserve succession from the classical theory and, in particular, use these methods for studies of quantum systems. The quantum dispersion of a nonlinear oscillator excited by an external source and of a parametric generator is calculated. Its role is established in the solution of the problem of stability of oscillations.  相似文献   

18.
This paper investigates the collision between two nonlinear waves with arbitrary angle in two-dimensional nonlinear lattice. By using the extended Poincarge-Lighthill-Kuo perturbation method, it obtains two Korteweg-de Vries equations for nonlinear waves in both the ζ and η directions, respectively, and derives the analytical phase shifts after the collision of two nonlinear waves. Finally, the solution of u(υ) up to O(ε^3) order is given.  相似文献   

19.
M M Hasan  M A Hossen  A Rafat  A A Mamun 《中国物理 B》2016,25(10):105203-105203
A theoretical investigation has been carried out on the propagation of the ion–acoustic(IA) waves in a relativistic degenerate plasma containing relativistic degenerate electron and positron fluids in the presence of inertial non-relativistic light ion fluid. The Korteweg-de Vries(K-dV), modified K-dV(m K-dV), and mixed m K-dV(mm K-dV) equations are derived by adopting the reductive perturbation method. In order to analyze the basic features(phase speed, amplitude, width,etc.) of the IA solitary waves(SWs), the SWs solutions of the K-dV, m K-dV, and mm K-d V are numerically analyzed. It is found that the degenerate pressure, inclusion of the new phenomena like the Fermi temperatures and quantum mechanical effects(arising due to the quantum diffraction) of both electrons and positrons, number densities, etc., of the plasma species remarkably change the basic characteristics of the IA SWs which are found to be formed either with positive or negative potential. The implication of our results in explaining different nonlinear phenomena in astrophysical compact objects, e.g.,white dwarfs, neutron stars, etc., and laboratory plasmas like intense laser–solid matter interaction experiments, etc., are mentioned.  相似文献   

20.
陈雄文  林旭升  兰胜 《中国物理》2005,14(2):366-371
We investigate by numerical simulation the compression of subpicosecond pulses in two-dimensional nonlinear photonic crystal (PC) waveguides. The compression originates from the generation of high-order optical solitons through the interplay of the huge group-velocity dispersion and the enhanced self-phase modulation in nonlinear PC waveguides.Both the formation of Bragg grating solitons and gap solitons can lead to efficient pulse compression. The compression factors under different excitation power densities and the optimum length for subpicosecond pulse compression have been determined. As a compressor, the total length of the nonlinear PC waveguide is only ten micrometres and therefore can be easily incorporated into PC integrated circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号