首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanostructured NiCu layered double hydroxides (NiCu LDHs) are synthesized in situ on polypyrrole nanotubes through convenient co-precipitation and hydrothermal synthesis. The nanostructured composite (NiCu LDHs/PPy) shows high electrocatalytic activities towards the glucose oxidation reaction in alkaline electrolyte so that a nonenzymatic glucose sensor is developed. It is demonstrated that the sensor offers a wide linear range from 1.5 μM to 1.0 mM with a high sensitivity of 525.8 μA mM−1 cm−2 and a low limit of detection of 66 nM (S/N = 3). The nonenzymatic sensor has been successfully applied to real blood samples for glucose monitoring with high accuracy.  相似文献   

2.
The electrocatalytic oxidation of glucose plays a vital role in biomass conversion, renewable energy, and biosensors, but significant challenges remain to achieve high selectivity and high activity simultaneously. In this study, we present a novel approach for achieving complete glucose electrooxidation utilizing Cu-based metal-hydroxide-organic framework (Cu-MHOF) featuring coordinatively unsaturated Cu active sites. In contrast to traditional Cu(OH)2 catalysts, the Cu-MHOF exhibits a remarkable 40-fold increase in electrocatalytic activity for glucose oxidation, enabling exclusive oxidation of glucose into formate and carbonate as the final products. The critical role of open metal sites in enhancing the adsorption affinity of glucose and key intermediates was confirmed by control experiments and density functional theory simulations. Subsequently, a miniaturized nonenzymatic glucose sensor was developed showing superior performance with a high sensitivity of 214.7 μA mM−1 cm−2, a wide detection range from 0.1 μM to 22 mM, and a low detection limit of 0.086 μM. Our work provides a novel molecule-level strategy for designing catalytically active sites and could inspire the development of novel metal–organic framework for next-generation electrochemical devices.  相似文献   

3.
《Electroanalysis》2017,29(8):1876-1886
A facile chemical solution deposition via two‐step spin coating technique was used to fabricate nano‐particulate novel Sn doped Co3O4 thin film for glucose sensor and fuel cell applications. Substitution of Sn into Co3O4 host lattice lead to a remarkable increase in the electrocatalytic activity of the Co3O4 electrode material. Film thickness played a significant role in enhancing the charge transferability of the electrode as was observed from electrochemical impedance spectroscopy (EIS). The best sensor exhibited two wide linear response ranges (2 μM up to ∼0.5 mM and 0.6 mM up to ∼5.5 mM respectively) with sensitivities of 921 and 265 μA cm−2 mM−1 respectively and low limit of detection of 100 nM (S/N=3). The sensor was very selective towards glucose in the presence of various interference and showed long term stability. Moreover, the developed thin film modified electrode could generate one electron current in nonenzymatic fuel cell setup at room temperature.  相似文献   

4.
Reactive oxygen species (ROS) have become the focus of research in recent years because they are closely related to many diseases, including cancer. Therefore, detection of ROS released from cells is of particular importance. In this work, the nanocomposites with uniform dispersion of silver nanoparticles were obtained through pyrolyzing a novel silver-based metal-organic framework. As the main active component of the composition, AgNPs can effectively catalyze the decomposition of hydrogen peroxide produced by superoxide anion (O2) disproportionation. Then, we designed a superoxide anion sensor (AgNPs@C/GCE) using the above nanocomposite for the first time. The prepared sensor presented excellent catalytic ability and satisfactory detection performance towards O2 with a detection range as wide as eight orders of magnitude and a lower detection limit of 1.011×10−13 M (S/N=3). Furthermore, the sensor can directly measure O2 released by human cervical cancer cells (HeLa) under both the normal condition and the inducement by malonic acid. In addition, we explored the effects of different concentrations of stimuli on cells. The results illustrated the high dose malonic acid can cause oxidative stress on cells. Thus, this work has the tremendous potential applications to diagnosis of diseases related to ROS.  相似文献   

5.
A bud-like poly-L-tyrosine/Bi modified glassy carbon electrode (p-Tyr/Bi/GC) was prepared by CV and in situ Bi plating, whose conductivity and membrane morphology were characterized by CV, EIS and SEM, respectively. The p-Tyr membrane can effectively promote the enrichment of Cd2+. The optimal Tyr concentration and scanning number for p-Tyr/GC preparation were 2.0 mmol ⋅ L−1 and 35, while the optimal Bi3+ concentration, pH and Cd2+ accumulation potential in test medium were 3.0 μmol ⋅ L−1, 6.5 and −1.3 V, respectively. The linear equation of p-Tyr/Bi/GC's response to Cd2+ (1.0 nmol ⋅ L−1 to 2.0 μmol ⋅ L−1) was ip (μA) = −0.6809 + 100.2c (μmol ⋅ L−1) (R2 = 0.9985) with a detection limit of 0.11 nmol ⋅ L−1 (3S/N). The elimination of interference caused by Cu2+ in sample was studied by electrodeposition. The p-Tyr/Bi/GC electrode was successfully used for detecting Cd in rice samples with good reliability and accuracy. The developed Cd2+ sensor exhibits high sensitivity, wide linear range and low detection limit, especially the designed method of eliminating Cu2+ interference has the characteristics of high selectivity, simple operation and wide application range.  相似文献   

6.
《Electroanalysis》2018,30(3):525-532
A novel hierarchically nanoporous carbon (NPC) derived from Al‐based porous coordination polymer is prepared by two‐step carbonization method for immobilization of the Co3O4 in the application of the nonenzymatic biofuel cells and biosensors. The structure and morphology are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), and X‐ray diffraction (XRD). Brunauer‐Emmett‐Teller (BET) is to characterize the porous nature of the NPC, and X‐ray photoelectron spectroscopy (XPS) is to characterize the composition of Co3O4@nanoporous carbon (Co3O4@NPC). Without collapse in the high carbonization temperature (above 1600 °C), the NPC maintains the nanoporous structure and high specific surface area of 1551.2 m2 g−1. In addition, the NPC is composited with Co3O4 by hydrothermal method to form the Co3O4@NPC. When tested as the nonenzymatic electrocatalyst for glucose oxidation reaction (GOR), the Co3O4@NPC exhibits higher response to glucose, in which the current shifts up by 64 %, than pure Co3O4 in 0.1 M KOH. The limit of detection is 0.005 mM (S/N=3) and response time is within 3 s. The detection range can be divided into two sections of 0.02–1.4 mM and 1.4–10.7 mM with the sensitivity of 249.1 μA mM−1 cm−2 and 66.6 μA mM−1 cm−2, respectively. A glucose fuel cell is constructed with the Co3O4@NPC as the anode and Pt/C catalyst as the cathode. The open‐circuit potential of the nonenzymatic glucose/O2 fuel cell was 0.68 V, with a maximum power density of 0.52 mW cm−2 at 0.27 V. This work may contribute to exploring other nanoporous carbons for application in glucose fuel cells and biosensors.  相似文献   

7.
Commercially available copper foam (CF) was used as a 3D porous electrochemical sensing platform for nonenzymatic glucose detection. CF shows high electrocatalytic activity towards glucose oxidation and can be used directly for glucose electrochemical sensing without any pretreatment. The sensor exhibits high performance towards glucose in 0.1 M NaOH solution with the linear range from 1 μM to 0.5 mM, the sensitivity of 5.85 mA mM?1 cm?2 and the detection limit of 0.5 μM (S/N=3) simultaneously. Furthermore, the sensor shows a high selectivity for glucose against the common interferences and good reliability for glucose detection in human serum samples.  相似文献   

8.
《Electroanalysis》2017,29(7):1755-1761
As a promising electrode material, Ni‐based nanomaterials exhibit a remarkable electrochemical catalytic activity for nonenzymatic glucose sensors. In this paper, Nickel–Iron layered double hydroxide (NiFe‐LDH) film electrode with ultrathin nanosheets and porous nanostructures was synthesized directly on Ni foam (NF) by a one‐step hydrothermal method. The as‐obtained NiFe‐LDH electrode was adopted for glucose detection without further treatment. As an integrated binder‐free electrode for glucose sensor, the NiFe‐LDH/NF hybrid exhibits a superior sensitivity of 3680.2 μA mM−1 cm−2 with a low limit of detection (0.59 μM, S/N=3) as well as fast response time (<1 s). An excellent selectivity from potential interference species such as ascorbic acid, uric acid and Cl ions and acceptable stability were also achieved. The outstanding performance can be ascribed to the abundant electrochemistry active sites, facilitative diffusion of the electrolyte, high electron transfer rate and reliable stability architecture. Therefore, the NiFe‐LDH nanosheets demonstrate potential application in non‐enzymatic sensory of glucose.  相似文献   

9.
In this work, a dual-functional electrochemical sensor has been proposed based on Sn-doped defective Bi2S3 (TDDB) microspheres, which exhibited the excellent electrochemical performance on Pb(II) and H2O2 detection. The TDDB offered a satisfied detection limit of 8.0 nM towards Pb(II) with a sensitivity of 96.7 μA ⋅ μM−1. As a H2O2 sensor, a high sensitivity of 3540 μA mM−1 cm−2 was obtained in a linear range from 0.45 mM to 10 mM with a detection limit of 10 nM. Moreover, the electrochemical detection of Pb(II) in Taihu Lake and H2O2 in human serum was achieved with high reliability and good recovery.  相似文献   

10.
The hierarchical three-dimensional nitrogen-doped carbon nanotube anchored bimetallic cobalt copper organic framework (NCNT MOF CoCu) is successfully synthesized by the direct growth approach using the high-temperature carbonization of bimetallic cobalt copper organic framework (MOF CoCu-500). The as-prepared NCNT MOF CoCu nanostructure possesses high-level activity for both glucose and hydrogen peroxide (H2O2) sensing molecules. The cyclic voltammetry (CV) and chronoamperometry (CA) studies demonstrate excellent electrocatalytic performance for the oxidation of glucose with a linear range of 0.05 to 2.5 mM, high sensitivity of 1027 μA mM−1cm−2, and the lowest detection limit of 0.15 μM. Similarly, the NCNT MOF CoCu nanostructure showed significantly higher H2O2 activity with a linear range of 0.05 to 3.5 mM, high sensitivity of 639.5 μA mM−1cm−2, and the lowest detection limit of 0.206 μM. Thanks to its special hierarchical nanoarchitecture, homogeneous nitrogen-doped carbon nanotubes, and highly graphitized carbon, which may be increased the synergistic effect between bimetallic CoCu and NCNT in the organic framework. The potentially effective fabricated sensor was also used as a suitable probe for the detection of glucose and H2O2 in the analysis of the real samples.  相似文献   

11.
The novel method of amoxicillin (AM) determination has been developed using single-sweep polarography. The proposed method is based on the obtaining of yellow coloured azo compound due to azo coupling reaction of previous diazotized sulphanilamide (SA) (in the medium of 0.6 M hydrochloric acid) with amoxicillin at pH=9.0 with the further reduction of the formed analytical form on a dropping mercury electrode. Voltammetric determination of amoxicillin is carried out due to the reduction peak of azo group of the obtained azo compound in the presence of 0.05 mol ⋅ L−1 Na2B4O7 as a background electrolyte at the potential Ecp2=−0.55 V and potential sweep rate of 2.5 V ⋅ s−1. The developed voltammetric method has two linear ranges of the determined concentrations (0.05–2.0) ⋅ 10−5 mol ⋅ L−1 and (0.2–1.0) ⋅ 10−4 mol ⋅ L−1 and the high sensitivity: LOD without the removing of unreacted sodium nitrite is 1.1 ⋅ 10−6 mol ⋅ L−1, and 7.2 ⋅ 10−7 mol ⋅ L−1, when NaNO2 excess is removed using urea. The developed voltammetric technique of AM determination has been approved during the analyses of tablets and oral suspension.  相似文献   

12.
《Electroanalysis》2017,29(2):423-432
In the present paper, a stable and selective non‐enzymatic sensor is reported for determination of glucose (Glc) by using a carbon paste electrode modified with multiwall carbon nanotubes and Ni(II)‐SHP complex as modifier in an alkaline solution. This modified electrode showed impressive activity for oxidation of glucose in NaOH solution. Herein, Ni(II)‐SHP acts as a suitable platform for oxidation of glucose to glucolactone on the surface of the modified electrode by decreasing the overpotential and increasing in the current of analyte. Under the optimum conditions, the rate constant and electron transfer coefficient between electrode and modifier, were calculated to be 1.04 s−1 and 0.64, respectively. The anodic peak currents indicated a linear dependency with the square root of scan rate and this behavior is the characteristic of a diffusion controlled process. So, the diffusion coefficient of glucose was found to be 3.12×10−6 cm2 s−1 due to the used number of transferred electron of 1. The obtained results revealed two linear ranges (5 to 190.0 μM (R2=0.997), 210.0 to 700.0 μM (R2=0.999)) and the detection limit of 1.3 μM for glucose was calculated by using differential pulse voltammetry (DPV) method. Also, the designed sensor was used for determination of glucose in the blood serum and urine samples. Some other advantages of Ni(II)‐SHP/CNT/CPE sensor are remarkable reproducibility, stability and selectivity which can be related to using nanomaterial of carbon nanotubes due to enhancement of electrode surface area.  相似文献   

13.
A glassy carbon electrode (GCE) was modified with nickel(II) hydroxide nanoparticles and a film of molybdenum sulfide. The nanocomposite was prepared by two-step electrodeposition. Scanning electron microscopy reveals that the nanoparticles are uniformly deposited on the film. Cyclic voltammetry and chronoamperometry indicate that this modified GCE displays a remarkable electrocatalytic activity towards nonenzymatic oxidation of glucose. Response is linear in the 10–1,300 μM concentration range (R 2 ?=?0.9987), the detection limit is very low (5.8 μM), response is rapid (< 2 s), and selectivity over ascorbic acid, dopamine, uric acid, fructose and galactose is very good.
Figure
An efficient nonenzymatic glucose sensor based on Ni(OH)2/MoSx nanocomposite modified glassy carbon electrode has been fabricated via a two-step electrodeposition approach. The resulting nonenzymatic sensor exhibits excellent properties toward glucose detection, such as low detection limit, fast response and noticeable selectivity.  相似文献   

14.
Late transition metal-bonded atomic oxygen radicals (LTM−O⋅) have been frequently proposed as important active sites to selectively activate and transform inert alkane molecules. However, it is extremely challenging to characterize the LTM−O⋅-mediated elementary reactions for clarifying the underlying mechanisms limited by the low activity of LTM−O⋅ radicals that is inaccessible by the traditional experimental methods. Herein, benefiting from our newly-designed ship-lock type reactor, the reactivity of iron-vanadium bimetallic oxide cluster anions FeV3O10 and FeV5O15 featuring with Fe−O⋅ radicals to abstract a hydrogen atom from C2−C4 alkanes has been experimentally characterized at 298 K, and the rate constants are determined in the orders of magnitude of 10−14 to 10−16 cm3 molecule−1 s−1, which are four orders of magnitude slower than the values of counterpart ScV3O10 and ScV5O15 clusters bearing Sc−O⋅ radicals. Theoretical results reveal that the rearrangements of the electronic and geometric structures during the reaction process function to modulate the activity of Fe−O⋅. This study not only quantitatively characterizes the elementary reactions of LTM−O⋅ radicals with alkanes, but also provides new insights into structure-activity relationship of M−O⋅ radicals.  相似文献   

15.
Many studies have focused on effective ways to exploit enzyme immobilization on an electrode surface to help improve the performance of enzymatic electrochemical biosensors. Herein, a novel glucose sensor was fabricated by immobilizing glucose oxidase (GOx) onruthenium-based conjugated polymer (CP) and metal-organic framework (MOF) nanocomposites. This has not only reduced the applied potential to 0.2 V (vs. Ag/AgCl), but also improved the effective surface area for enzyme immobilization.PPG@Ru@UiO-66-NH2 was tailored by controlled chemical synthesis from a pre-synthesized water-soluble conjugated polymer (poly(N-phenylglycine)) and metal-organic framework (UiO-66-NH2). The resulting nanocomposites were characterized using Fourier transform infrared spectroscopy, X-ray fluorescence, scanning electron microscopy, and cyclic voltammetry. The PPG@Ru@UiO-66-NH2/GOx coated electrodedisplayed a linear measurementrange for glucose from 1 mM to 10 mM, with a sensitivity of 45.92 μA ⋅ mM−1cm−1 and limit of detection of5 μM( ). Furthermore, the practical application of the fabricatedglucosesensor was tested in simulative blood samples with satisfactoryaccuracy. This approach alsoopens a new door for applications regarding both enzymatic electrochemical biosensors and enzymatic biofuel cells (EBFCs).  相似文献   

16.
In this paper a new enzymeless electrochemical glucose sensor based on carboxylated multiwalled carbon nanotubes (cMWCNT) with immobilized nickel (II) acetylacetonate (NiL) as electrocatalyst and molecularly imprinted polymer fabricated through electrostatic self-assembling of polyethyleneimine (PEI) crosslinked with glutaric dialdehyde (GDA). The electrocatalytic properties of NiL and PEI-cMWCNT, PEI-GDA and PEI-glucose interactions is studied for the first time. Developed sensor demonstrates excellent electrocatalytic activity towards glucose oxidation and possessing high stability, sensitivity of 5897.42±161.00 μA ⋅ mM−1 cm−2, LOD of 0.138 mM and high selectivity in the presence of creatinine, L-alanine, glycine, D-glutamine, uric acid, L-ascorbic acid, urea and BSA.  相似文献   

17.
In this work, we reported the development of a nickel metal-organic framework nanosheet array on Ti-mesh (Ni-MOF/TM) as an enzyme-free electrochemical sensing platform for H2O2 determination. The as-obtained sensor exhibited outstanding detection properties of H2O2, which might be gifted from the large specific surface area, abundant active sites of Ni-MOF nanoarrays. The sensor displayed a good linear range (0.8 μM–4.6×103 μM), a detection limit as low as 0.26 μM, a high sensitivity (307.5 μA mM−1 cm−2), and a rapid response. Moreover, this enzyme-free sensor is promising for point-of-care (POC) testing of H2O2 in human serum attribute to the excellent performance of Ni-MOF and the simple preparation process of the sensor.  相似文献   

18.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability.  相似文献   

19.
The nanocomposites of Ag nanoparticles supported on Cu2O were prepared and used for fabricating a novel nonenzymatic H2O2 sensor. The morphology and composition of the nanocomposites were characterized using the scanning electron microscope (SEM), transmission electron microscope (TEM), energy‐dispersive X‐ray spectrum (EDX) and X‐ray diffraction spectrum (XRD). The electrochemical investigations indicate that the sensor possesses an excellent performance toward H2O2. The linear range is estimated to be from 2.0 μM to 13.0 mM with a sensitivity of 88.9 μA mM?1 cm?2, a response time of 3 s and a low detection limit of 0.7 μM at a signal‐to‐noise ratio of 3. Additionally, the sensor exhibits good anti‐interference.  相似文献   

20.
Electrochemical oxidation of glucose is the guarantee to realize nonenzymatic sensing of glucose, but greatly hindered by the slow kinetics of its oxidation process. Herein, various nanomaterials were designed as catalysts to accelerate glucose oxidation reaction. However, how to effectively build an excellent platform for promoting the glucose oxidation is still a great challenge. In our work, 1D CaMoO4 and NiMoO4 nanofibres with same morphologies and sub-microstructures were fabricated by electrospinning technique in the first time, and explored to modify the detection electrodes of nonenzymatic glucose sensors. The electrochemical results indicated that the NiMoO4 based sensor exhibited a good catalytic activity toward glucose including the low response potential (0.5 V), high sensitivity(193.8 μA mM−1 cm−2) with a linear response region of 0.01–8 mM, low detection limit (4.6 μM) and fast response time (2 s), all of which are superior to the corresponding values of CaMoO4 nanofibres and even higher than those of most reported NiO and Co3O4 catalysts, which is due to the NiMoO4 nanofibres are not only advantageous to electron transfer, but can mediated the electrocatalytic reaction of glucose. This work should provide a new pathway for the design of advanced glucose catalysts for nonenzymatic sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号