首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel electrochemical genosensor based on a graphite electrode modified with poly(4-aminophenol) has been constructed for prognostic of neuroblastoma, a malignant tumor originating from embryonic precursor cells of the sympathetic nervous system and associated with the amplification of the MYCN oncogene. The genosensor exhibited distinct electrical and morphological properties using rhodamine B as indicator of DNA hybridization. The detection limit was evaluated to be 0.47 μmol L?1 (n = 3), and the electrochemical genosensor was selective for the complementary DNA, using serum sample. This DNA sensing platform was successfully applied to detect MYCN, an important biomarker for neuroblastoma.  相似文献   

2.
Impedance spectroscopy is proposed as the transduction principle for detecting the hybridization of DNA complementary strands. In our experiments, different DNA oligonucleotides were used as model gene substances. The gene probe is first immobilized on a graphite-epoxy composite working electrode based genosensor. Detection principle is based on changes of impedance spectra of a redox marker, the ferro/ferricyanide couple, after hybridization with target DNA. Resistance offered to the electrochemical reaction serves as the working signal, allowing for an unlabelled gene assay.   相似文献   

3.
Human brain bacterial meningitis is a life-threatening disease caused mainly by Neisseria meningitidis, lead to damage of the outer membrane covering (meninges) of brain or even death. The usual methods of diagnosis are either time-consuming or have some limitations. The specific rmpM (reduction-modifiable protein M) virulent gene based genosensor is more sensitive, specific, and can detect N. meningitidis directly from the patient cerebrospinal fluid in 30 min including 1-min response time. 5′-Thiol-labeled single-stranded DNA (ssDNA) probe was immobilized onto screen-printed gold electrode (SPGE) and hybridized with denatured (95 °C) single-stranded genomic DNA (ssG-DNA) for 10 min at 25 °C. The electrochemical response was measured by cyclic voltammetry, differential pulse voltammetry (DPV) and electrochemical impedance using redox indicators. The sensitivity of the genosensor was 9.5087?(μA/cm2)/ng with DPV and limit of detection was 3 ng/6 μL ssG-DNA. The immobilization of the ssDNA probe and hybridization with ssG-DNA from N. meningitidis was characterized by atomic force microscopy and Fourier transform infrared spectroscopy. The rmpM genosensor was stable for 6 months at 4 °C with 10 % loss in initial DPV current. The advantage of rmpM genosensor is to detect bacterial meningitis simultaneously in multiple patients using SPGE array during an outbreak of the disease.  相似文献   

4.
Pividori MI  Merkoçi A  Alegret S 《The Analyst》2001,126(9):1551-1557
A new electrochemical hybridisation genosensor for the detection of resistant bacteria has been developed. This device relies on the immobilisation of a 50-mer oligonucleotide target, unique to a novel determinant of beta-lactamase resistance in Staphylococcus aureus, onto an electrochemical transducer. This genosensor is based on a concept adapted from classical dot-blot DNA analysis, but implemented in an electrochemical biosensor configuration. Amperometric transduction and an enzyme label method, that increases the genosensor sensitivity, are the main features of this new approach. In addition to the adapted dot-blot format, a double hybridisation assay, in which two different labelled probes were used, is reported. This procedure, if combined with polymerase chain reaction (PCR), allows determination of the genotype of an antibiotic-resistant organism in a shorter time than that required to perform traditional phenotypic susceptibility testing. Its characteristics are ideal for implementation in a kit form.  相似文献   

5.
This work describes an electrochemical genosensor for detection of genomic RNA of Zika virus in real samples of infected patients, using a new platform based on graphite electrodes modified with electrochemically reduced graphene oxide and polytyramine‐conducting polymer. The developed genosensor was suitable for differentiation between samples of healthy and infected patients with Zika virus by differential pulse voltammetry, detecting up to 0.1 fg/mL (1.72 copies/mL), showing good stability (about 60 days), rapid analysis (about 20 min) and potential for filling the lack of practical diagnostic methods for Zika virus.  相似文献   

6.
A mass sensitive quartz crystal microbalance (QCM) based genosensor has been developed using breast cancer 1 (BRCA1) gene as a model gene. We modified the traditional sandwich assay by conjugating reporter probe DNA (DNA-r) with an assembly of gold nanoparticles leading to an increased mass on the surface, which enhanced the sensitivity to few orders of magnitude. The unique cleavage function of endonuclease is used for achieving the selectivity to complementary DNA over mismatched DNA. With this combination, the sensor exhibited excellent sensitivity with a detection limit of 10 aM BRCA1 gene and it showed good selectivity for even single base mismatch DNA targets. This ultrasensitive and cost-effective DNA detection protocol can be extended to the direct analysis of any non-amplified genomic DNA.  相似文献   

7.
Direct electrochemical genosensor was developed for the detection of a probe sequence relative position in a PCR amplicon for the optimum detection of bacterial and microbiological diseases, in this study. The genosensor relies on a label-free electrochemical detection. The amino-linked inosine modified (guanine-free) coequal capture probes which were chosen from different parts of a PCR amplicon, immobilized on to disposable pencil graphite electrodes (PGE) by electrostatically and covalently. As a model case Hepatitis B virus (HBV) genome amplicon was used for the detection and specification. Hybridization was occurred after surface coverage with denatured amplicons. After hybridization, optimum probe sequence position was identified by using the differences between the responses of guanine oxidation signals. The results of this study might have a great convenience for the microbiological diseases detection applications such as DNA micro arrays.  相似文献   

8.
A DNA biosensor for the detection of specific oligonucleotide sequences of Avian Influenza Virus type H5N1 has been proposed. The NH2‐ssDNA probe was deposited onto a gold electrode surface to form an amide bond between the carboxyl group of thioacid and the amino group from ssDNA probe. The signals generated as a result of hybridization were registered in square wave voltammetry and electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3?/4? as a redox marker. The genosensor is capable to determine 20‐mer and 180‐bp (PCR products) oligonucleotides complementary sequences with detection limit in the fM range. The genosensor displays good selectivity and sensitivity. The 20‐mer as well as 180‐bp oligonucleotides without a complementary sequence generate very low signal.  相似文献   

9.
Palchetti I  Mascini M 《The Analyst》2008,133(7):846-854
Nucleic acid-based biosensors are finding increasing use for the detection of environmental pollution and toxicity. A biosensor is defined as a compact analytical device incorporating a biological or biologically-derived sensing element either integrated within or intimately associated with a physicochemical transducer. A nucleic acid-based biosensor employs as the sensing element an oligonucleotide, with a known sequence of bases, or a complex structure of DNA or RNA. Nucleic acid biosensors can be used to detect DNA/RNA fragments or either biological or chemical species. In the first application, DNA/RNA is the analyte and it is detected through the hybridization reaction (this kind of biosensor is also called a genosensor). In the second application, DNA/RNA plays the role of the receptor of specific biological and/or chemical species, such as target proteins, pollutants or drugs. Recent advances in the development and applications of nucleic acid-based biosensors for environmental application are reviewed in this article with special emphasis on functional nucleic acid elements (aptamers, DNAzymes, aptazymes) and lab-on-a-chip technology.  相似文献   

10.
《Electroanalysis》2017,29(3):773-777
Sickle cell anemia (SCA) is a common recessive genetic condition in which patients produce an abnormal form of hemoglobin. The disease is common mainly among African individuals and in parts of the continent up to 40 % of the population presents its genetic trait. Currently, disease diagnosis and trait determination are performed using polymerase chain reaction, liquid chromatography and electrophoresis. Although these methods present high sensitivity and are well established, they are costly and require specialized equipment to be performed. We developed an electrochemical genosensor for simple and low cost SCA trait determination. The device was based on the immobilization of single DNA strands containing the disease related mutation on gold platforms using the self‐assembled monolayers technique. The determination of SCA trait was then performed using electrochemical impedance spectroscopy. The genosensor displayed a wide linear range (0.01 to 7.5 μmol L−1, R2=0.979), with a detection limit of 7.0 nmol L−1. Furthermore, the device was able to distinguish between DNA sequences containing or not the mutation (target and non‐target sequences) with precision and great reproducibility (10.4 %, n=3). It is expected that such sensor increases the number of SCA trait determination, promoting early diagnosis and genetically counseling.  相似文献   

11.
The 5′ amino-labeled DNA probe complementary to mga gene of Streptococcus pyogenes was immobilized on carboxylated multiwall carbon nanotubes electrode and hybridized with 0.1–100 ng/6 μl single-stranded genomic DNA (ssG-DNA) of S. pyogenes from throat swab of suspected rheumatic heart disease (RHD) patients. Electrochemical response was measured by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance (EI). The sensitivity of the sensor was 106.03?(μA/cm2)/ng and limit of detection (LOD) was found 0.014 ng/6 μl with regression coefficient (R 2) of 0.921 using DPV. The genosensor was characterized by FTIR and SEM, and electrode was found stable for 6 months on storage at 4 °C with 5–6 % loss in initial DPV current. mga genosensor is the first report on RHD sensor which can save life of several suspected patients by early diagnosis in 30 min.  相似文献   

12.
The development of an electrochemical genosensor involving DNA biotinylated capture probe immobilized on streptavidin coated paramagnetic beads and microfluidic based platform for the detection of P53 gene PCR product is reported. The novelty of this work is the combination of a sensitive electrochemical platform and a proper microfluidic system with a simple and effective enzyme signal amplification technology, ELISA, for detection of target DNA sequence and single nucleotide mutation in p53 tumor suppressor gene sequence. The biosensor has been applied to detect the PCR amplified samples and the results shows that it can discriminate successfully perfect matched DNA from mutant form.  相似文献   

13.
A novel approach to construct an electrochemical DNA sensor based on immobilization of a 25 base single-stranded probe, specific to E. coli lac Z gene, onto a gold disk electrode is described. The capture probe is covalently attached using a self-assembled monolayer of 3,3′-dithiodipropionic acid di(N-succinimidyl ester) (DTSP) and mercaptohexanol (MCH) as spacer. Hybridization of the immobilized probe with the target DNA at the electrode surface was monitored by square wave voltammetry (SWV), using methylene blue (MB) as electrochemical indicator. Variables involved in the sensor performance, such as the DTSP concentration in the modification solution, the self-assembled monolayers (SAM) formation time, the DNA probe drying time atop the electrode surface and the amount of probe immobilized, were optimized.

A good stability of the single- and double-stranded oligonucleotides immobilized on the DTSP-modified electrode was demonstrated, and a target DNA detection limit of 45 nM was achieved without signal amplification. Hybridization specificity was checked with non-complementary and mismatch oligonucleotides. A single-base mismatch oligonucleotide gave a hybridization response only 7 ± 3%, higher than the signal obtained for the capture probe before hybridization. The possibility of reusing the electrochemical genosensor was also tested.  相似文献   


14.
An electrochemical genosensor array for the simultaneous detection of three high-risk human papillomavirus (HPV) DNA sequences, HPV16, 18 and 45, exhibiting high sensitivity and selectivity is presented. The electrodes of a 4 × 4 array were modified via co-immobilization of a 1:100 (mol/mol) mixture of a thiolated probe and an oligoethyleneglycol-terminated bipodal thiol. Detection of synthetic and PCR products was carried out in a sandwich type format, with the target hybridized between a surface immobilized probe and a horseradish peroxidase-labelled secondary reporter probe. The detection limits obtained in the detection of each individual target were in the pM range, allowing the application of this sensor for the detection of samples obtained from PCR amplification of cervical scrape samples. The results obtained exhibited an excellent correlation with the HPV genotyping carried out within a hospital laboratory. Multiplexing and cross-reactivity studies demonstrated high selectivity over potential interfering sequences, facilitating application of the developed platform for the high-throughput screening of multiple high-risk DNA sequences.  相似文献   

15.
This report presents a new concept of genosensor based on polymerase chain reaction (PCR) amplification with in-situ piezoelectric micro-mass measurement. Though there are increasing reports on DNA hybridization sensors based on electrochemical, optical and piezoelectric transducers with advantages such as simplicity and cost-effectiveness, the sensitivity of genosensors developed so far could not match with the PCR technique, which is well-known to be generated in abundance.  相似文献   

16.
The current study explores the possibility of using a polyethyleneglycol(PEG)-ammonium sulphate aqueous two-phase system (ATPS) as an early step in a process for the purification of a model 6.1 kbp plasmid DNA (pDNA) vector. Neutralised alkaline lysates were fed directly to ATPS. Conditions were selected to direct pDNA towards the salt-rich bottom phase, so that this stream could be subsequently processed by hydrophobic interaction chromatography (HIC). Screening of the best conditions for ATPS extraction was performed using three PEG molecular weights (300, 400 and 600) and varying the tie-line length, phase volume ratio and lysate load. For a 20% (w/w) lysate load, the best results were obtained with PEG 600 using the shortest tie-line (38.16%, w/w). By further manipulating the system composition along this tie-line in order to obtain a top/bottom phase volume ratio of 9.3 (35%, w/w PEG 600, 6%, w/w NH4)2 SO4), it was possible to recover 100% of pDNA in the bottom phase with a three-fold increase in concentration. Further increase in the lysate load up to 40% (w/w) with this system resulted in a eight-fold increase in pDNA concentration, but with a yield loss of 15%. The ATPS extraction was integrated with HIC and the overall process compared with a previously defined process that uses sequential precipitations with iso-propanol and ammonium sulphate prior to HIC. Although the final yield is lower in the ATPS-based process the purity grade of the final pDNA product is higher. This shows that it is possible to substitute the time-consuming two-step precipitation procedure by a simple ATPS extraction.  相似文献   

17.
Irradiation is the most efficient non-thermal technology for improving hygienic quality and extending the shelf-life of food products. One of the adverse effects of food irradiation, however, is off-flavor production, which significantly affects the sensory preferences for certain foods. In this study, garlic (5%, w/w) and red wine (1:1, w/w) were added to ground beef to increase the radiation sensitivity of pathogens and improve meat odor/flavor. Samples were irradiated at 0 or 5 kGy in the presence of charcoal pack. SPME-GC–MS analysis was performed to measure the changes in the volatile compounds and sensory characteristics of the samples. The amount of total volatile compounds produced from ground beef was greater when the sample was irradiated. When garlic and red wine were added to the ground beef, the amount of volatile compounds significantly increased, and the amount of volatile compounds increased even further after irradiation. However, when the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly. Sensory evaluation indicated that charcoal pack significantly increased the odor preferences for both irradiated and non-irradiated ground beef added with garlic. These results indicated that addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation, and this effect was consistent even when certain additives such as garlic and red wine were added.  相似文献   

18.
The current interest in “minimally processed foods” has attracted the attention for combination of mild treatments to improve food safety and shelf-life extention. The present study was conducted to evaluate the combined effect of gamma irradiation and incorporation of naturally occurring antimicrobial compounds on microbial and biochemistry characteristics of ground beef. Ground beef patties (23% fat ) were purchased from a local grocery store (IGA, Laval, Que., Canada) and divided into 3 separate treatment groups: (i) control (ground beef without additive), (ii) ground beef with 0.5% (w/w) ascorbic acid, and (iii) ground beef with 0.5% ascorbic acid and coated with a protein-based coating containing selected spices. Samples were irradiated at 0, 1, 2, and 3 kGy final dose at the CIC. Samples were stored at 4°C and evaluated periodically for microbial growth, total thiobarbituric reactive substances (TBARS) and free sulfydryl content. At the end of the storage period, Enterobacteriaceae, Lactic acid bacteria, Pseudomonas and Brochothrix thermosphacta were enumerated. Regardless of the treatment group, irradiation significantly (p0.05) reduced the total aerobic plate counts (APC). Irradiation doses of 1, 2, and 3 kGy produced immediate reduction of 2, 3, and 4 log units of APCs, respectively. Also, shelf-life periods were higher for ground beef samples containing food additives. Lactic acid bacteria and Brochothrix thermosphacta were more resistant to irradiation than Enterobacteriaceae and Pseudomonas. Concentration of TBARS and free sulfydryl concentrations were stabilized during post-irradiation storage for samples containing ascorbic acid and coated with the protein-based coating containing spices.  相似文献   

19.
The aim of this work is the preparation of DNA‐sensing architectures based on gold nanoparticles (AuNPs) in conjunction with an enzyme‐amplified detection to improve the analytical properties of genosensor. In order to assess the utility of study as DNA‐sensing devices, a thiolated DNA capture probe sequence was immobilized on the gold nanoparticle modified surface. After labeling of the biotinylated hybrid with a streptavidin‐alkaline phosphatase conjugate, the electrochemical detection of the enzymatic product was performed on the surface of a disposable electrode. Two different enzymatic substrates to detect the hybridization event were studied. In the first case, the enzyme catalyzed the hydrolysis of α‐naphthyl phosphate; the product is electroactive and has been detected by means of differential pulse voltammetry (DPV). In the second one, the enzyme catalyzed the precipitation of an insoluble and insulating product on the sensing interface. In this case, the electrochemical transduction of the hybridization process was performed by electrochemical impedance spectroscopy (EIS).  相似文献   

20.
Single-stage and multi-stage strategies have been evaluated and compared for the purification of human antibodies using liquid–liquid extraction in aqueous two-phase systems (ATPSs) composed of polyethylene glycol 3350 (PEG 3350), dextran, and triethylene glycol diglutaric acid (TEG-COOH). The performance of single-stage extraction systems was firstly investigated by studying the effect of pH, TEG-COOH concentration and volume ratio on the partitioning of the different components of a Chinese hamster ovary (CHO) cells supernatant. It was observed that lower pH values and high TEG-COOH concentrations favoured the selective extraction of human immunoglobulin G (IgG) to the PEG-rich phase. Higher recovery yields, purities and percentage of contaminants removal were always achieved in the presence of the ligand, TEG-COOH. The extraction of IgG could be enhanced using higher volume ratios, however with a significant decrease in both purity and percentage of contaminants removal. The best single-stage extraction conditions were achieved for an ATPS containing 1.3% (w/w) TEG-COOH with a volume ratio of 2.2, which allowed the recovery of 96% of IgG in the PEG-rich phase with a final IgG concentration of 0.21 mg/mL, a protein purity of 87% and a total purity of 43%. In order to enhance simultaneously both recovery yield and purity, a four stage cross-current operation was simulated and the corresponding liquid–liquid equilibrium (LLE) data determined. A predicted optimised scheme of a counter-current multi-stage aqueous two-phase extraction was hence described. IgG can be purified in the PEG-rich top phase with a final recovery yield of 95%, a final concentration of 1.04 mg/mL and a protein purity of 93%, if a PEG/dextran ATPS containing 1.3% (w/w) TEG-COOH, 5 stages and volume ratio of 0.4 are used. Moreover, according to the LLE data of all CHO cells supernatant components, it was possible to observe that most of the cells supernatant contaminants can be removed during this extraction step leading to a final total purity of about 85%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号