首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A nonaqueous electrochromatographic reversed-phase separation method for retinyl esters using continuous bed columns has been developed. The packing material 7 μm Nucleosil 4000 Å C18 was sol–gel bonded in 180 μm I.D. capillaries. The mobile phase used was 2.5 mM lithium acetate in N,N-dimethylformamide–acetonitrile–methanol (2+7+1, v/v). At 350 V/cm and 30°C, this mobile phase composition gave rise to an electroosmotic flow of 1 mm/s. No Joule heating nor bubble formation were observed even at 625 V/cm (17 μA). With a 36 cm Leff column complete separation of the commercially available and synthesized standards (all-trans-retinyl acetate, palmitate, heptadecanoate, stearate, oleoate, and linoleoate) was obtained within 10 min. The within-day and between-day variations of retention times of all-trans-retinyl palmitate were <0.3% relative standard deviation (RSD) (n=3) and <2% RSD (n=6), respectively. The within-day and between-day variations of peak areas were both <2% (both n=3). The columns were used for more than 1 month without degradation. Liver extracts from arctic seal were analyzed.  相似文献   

2.
A simple electroanalytical procedure has been developed for the determination of polyamine spermine using the ZnONPs-MWCNTs-CPE sensor. Spermine has been irreversibly oxidized on a modified electrode at a potential of +0.92 V versus Ag/AgCl (KCl, 3.5 mol L−1). The developed sensor demonstrated a respective linear response in borate buffer pH 8.5 from 2 μmol L−1 to 100 μmol L−1, with a detection limit of 0.300 μmol L−1 and quantification limit of 0.998 μmol L−1. The proposed sensor showed high reproducibility (RSD = 2.58 %), stability, robustness, and no obvious interference effects of several inorganic ions and organic molecules. The obtained results demonstrated excellent performance during the determination of the spermine in human urine samples with satisfactory recovery results (98.41–101.34 %), offering promising opportunities for practical clinical analysis.  相似文献   

3.
The synthesis of various polyene isocyanides, e.g. β-ionyl isocyanide and all-trans-retinyl isocyanide is reported. Their use in carbonyl-olefination was investigated and compared with the Wittig reaction. β-Carotene was obtained from all-traws-retinal and all-trans-retinyl isocyanide in good yield.  相似文献   

4.
《Electroanalysis》2018,30(8):1870-1879
A portable electroanalytical system applied for rapid and simultaneous determination of uric acid (UA) and nitrite (NIT) in human biological fluids (urine, saliva and blood) is reported. The system is based on batch‐injection analysis with multiple‐pulse amperometric (BIA‐MPA) detection using screen‐printed electrodes (SPEs) modified with multi‐walled carbon nanotubes. Sample dilution in optimized electrolyte (0.1 mol L−1 Britton‐Robinson buffer pH 2) followed by injection of 100 μL on the electrode surface using an electronic micropipette is performed. UA is detected at +0.45 V and both UA+NIT at +0.70 V. Linear calibration plots for UA and NIT were obtained over the range of 1–500 μmol L−1 with detection limits of 0.05 and 0.06 μmol L−1, respectively. For comparison, a differential‐pulse voltammetric (DPV) method was optimized, and linear calibration plots for UA and NIT were obtained over range of 1–30 μmol L−1 and 1–40 μmol L−1 with detection limits of 0.1 and 0.3 μmol L−1, respectively. BIA‐MPA is highly precise (RSD<1.3 %), fast (160 h−1) and free from sample‐matrix interferences as recovery values ranged from 77 to 121 % for spiked samples (short contact time of sample aliquot with SPE). Contrarily, recovery tests conducted using DPV did not provide adequate recovery values (>150 %), probably due to the longer contact time of the SPE with the biological samples during analysis leading to a severe interference of sample matrices.  相似文献   

5.
The preparation and characterisation of a new composite electrode with Co3O4 particles-modified multi-walled carbon nanotube (MWCNT) and poly(phenosafranine), as well as its novel application for the voltammetric detection of rutin was described. The resulting composite electrode was characterised using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). In the optimised experimental conditions, the oxidation peak current (Ipa) of rutin showed a linear increase in concentration, between 0.008–0.6 and 0.80–6.0 μmol L−1, with a detection limit of 0.00379 μmol L−1. Due to its good selectivity and stability, the composite electrode was successfully applied in detecting rutin in pharmaceutical formulations.  相似文献   

6.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

7.
A new electrochemical sensor based on a carbon nanotube paste electrode modified with a Santa Barbara Amorphous material (SBA-15) decorated with silver nanoparticles, namely CNT/SBA/Ag-PE, was developed. It was successfully applied for individual and simultaneous determination of both paracetamol (PC) and sulfamethoxazole (SMZ) medicines. The electrode exhibited a linear dynamic range of 0.12–110 μmol L−1 for paracetamol and 0.06–70 μmol L−1 for sulfamethoxazole, and detection limits of 38 and 19 nmol L−1, respectively. The proposed sensor offered high sensitivity, fast response time and the potential for detecting both drugs simultaneously. The CNT/SBA/Ag-PE enabled the simultaneous determination of PC and SMZ in urine samples with high recovery rates.  相似文献   

8.
《Electroanalysis》2018,30(9):1946-1955
In this paper, a rapid and sensitive modified electrode for the simultaneous determination of hydroquinone (HQ) and bisphenol A (BPA) is proposed. The simultaneous determination of these two compounds is extremely important since they can coexist in the same sample and are very harmful to plants, animals and the environment in general. A carbon paste electrode (CPE) was modified with silver nanoparticles (nAg) and polyvinylpyrrolidone (PVP). The PVP was used as a reducing and stabilizing agent of nAg from silver nitrate in aqueous media. The nAg‐PVP composite obtained was characterized by transmission electron microscopy and UV‐vis spectroscopy. The electrochemical behavior of HQ and BPA at the nAg‐PVP/CPE was investigated in 0.1 mol L−1 B−R buffer (pH 6.0) using cyclic voltammetry (CV) and square wave voltammetry (SWV). The results indicate that the electrochemical responses are improved significantly with the use of the modified electrode. The calibration curves obtained by SWV, under the optimized conditions, showed linear ranges of 0.09–2.00 μmol L−1 for HQ (limit of detection 0.088 μmol L−1) and 0.04–1.00 μmol L−1 for BPA (limit of detection 0.025 μmol L−1). The modified electrode was successfully applied in the analysis of water samples and the results were comparable to those obtained using UV‐vis spectroscopy.  相似文献   

9.
A novel nickel phthalocyanine/iron oxide nanoparticle (NiTsPc/ION) nanocomposite electrode is proposed for the voltammetric detection of ethinyl estradiol. The method shows a wide linear range (0.07–30 μmol L−1, R2 >0.99), sensitivity of 0.308 μA cm−2/μmol L−1 and limit of detection of 7.8 nmol L−1 (3.3 Sb/b). Recoveries are above 95 % for quantification in tap and treatment plant water samples and synthetic urine. A single electrode can be used in seven consecutive runs (RSD=2.85 %) and responses of different electrodes vary only 7–9 %. The excellent sensing performance of the proposed sensor is ascribed to its porous morphology and efficient charge-transfer between ION and NiTsPc.  相似文献   

10.
In this study, a simple and sensitive square wave voltammetric procedure has been developed for the determination of acemetacin (ACM) at graphite flake paste electrode (GFPE) and glassy carbon electrode (GCE). Under optimized conditions, the dependence of ACM peak current on its concentration showed wide linear range: 0.03–1.0 μmol L−1 and 0.7–15.0 μmol L−1 at GFPE and GCE, respectively. The developed method was successfully applied for the determination of ACM in pharmaceuticals and spiked urine with satisfying recoveries. The electrochemical oxidation of ACM is an irreversible process controlled by mixed nature of the mass transfer process.  相似文献   

11.
A bud-like poly-L-tyrosine/Bi modified glassy carbon electrode (p-Tyr/Bi/GC) was prepared by CV and in situ Bi plating, whose conductivity and membrane morphology were characterized by CV, EIS and SEM, respectively. The p-Tyr membrane can effectively promote the enrichment of Cd2+. The optimal Tyr concentration and scanning number for p-Tyr/GC preparation were 2.0 mmol ⋅ L−1 and 35, while the optimal Bi3+ concentration, pH and Cd2+ accumulation potential in test medium were 3.0 μmol ⋅ L−1, 6.5 and −1.3 V, respectively. The linear equation of p-Tyr/Bi/GC's response to Cd2+ (1.0 nmol ⋅ L−1 to 2.0 μmol ⋅ L−1) was ip (μA) = −0.6809 + 100.2c (μmol ⋅ L−1) (R2 = 0.9985) with a detection limit of 0.11 nmol ⋅ L−1 (3S/N). The elimination of interference caused by Cu2+ in sample was studied by electrodeposition. The p-Tyr/Bi/GC electrode was successfully used for detecting Cd in rice samples with good reliability and accuracy. The developed Cd2+ sensor exhibits high sensitivity, wide linear range and low detection limit, especially the designed method of eliminating Cu2+ interference has the characteristics of high selectivity, simple operation and wide application range.  相似文献   

12.
An activated carbon nanopowder modified glassy carbon electrode (AC-GCE) was constructed for the sensitive determination of methyl parathion by adsorptive differential pulse anodic stripping voltammetry. The simple and rapid modification procedure included only drop-coating the electrode surface with a laponite stabilized activated carbon nanopowder suspension and drying. The modifier high adsorption ability, combined with its large electroactive surface area allowed a 30-fold signal increase to be achieved, compared to bare GCE. Under optimized experimental conditions (activated carbon to laponite ratio, pH and accumulation time), the AC-GCE exhibited a linear response to methyl parathion in two concentration ranges: from 0.01 μmol L−1 to 1 μmol L−1 and from 1 μmol L−1 to 6 μmol L−1. The LOD of 2.5 nmol L−1 (S/N=3) achieved fitted with regulatory norms. It was demonstrated that the as-prepared AC-GCE is suitable for routine real samples analysis.  相似文献   

13.
《Electroanalysis》2017,29(10):2316-2322
A home‐made gold microelectrode (Au‐μE) was fabricated and its surface was modified with nanoporous gold structures via a facile electrochemical approach (anodization followed by electrochemical reduction method). The fabricated nanoporous Au microelectrode (NPG‐μE) was used as a sensor probe for the determination of As(III) in 1.0 mol L−1 HCl solution using square wave anodic stripping voltammetry (SWASV) technique. Field emission scanning electron microscopy (FE‐SEM) and cyclic voltammetry were used to characterize the surface morphology and assess the electrochemical surface area and the roughness factor of the NPG‐μE. SWASVs recorded with the NPG‐μE in As(III) solutions indicated linear behaviour in the concentration ranges of 10–200 μg L−1 and 2–30 μg L−1, with regression coefficients of 0.996 and 0.999 at a deposition time of 120 s, respectively. The limit of detection (LOD) was found to be 0.62 μg L−1 with high sensitivity of 29.75 μA (μg L−1)−1 cm−2. Repeatability and reproducibility were also examined and values were determined as 3.2 % and 9.0 %. Negligible interference from major interfering copper ion was noticed, revealing the excellent anti‐interference property of the proposed sensing platform. The developed NPG‐μE was successfully used for As(III) determination in tap water samples.  相似文献   

14.
In this work, a modified 3D-rGO/MWCNT with nickel and copper oxide nanoparticles were synthesized. The structural properties of this nanocomposite were investigated by several techniques. The fabricated sensor at optimum condition potential of +0.60 V (vs. Ag/AgCl) and a rotational rate of 1800 rpm gave a detection limit of 0.04 μmol L−1 with two dynamic ranges of 0.10–300 and 300–900 μmol L−1 glucose with high stability. The good accuracy of the fabricated sensor was proved in the determination of glucose in a blood sample (with recoveries between 95 % to 105 % and RSDs of 1.2 to 2.5 %).  相似文献   

15.
It is significant to develop a point-of-care testing (POCT) method for rapid detection of medicinal molecules. In this paper, a graphdiyne (GDY)-ionic liquid (IL) composite was prepared via one-step facile ultrasound preparation process and then modified on gold (Au) electrode surface by simple casting method. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of GDY-IL composite. Cyclic voltammetric results proved that GDY-IL composite on the electrode surface could effectively improve electron transfer rate, which meant that GDY-IL composite had high conductivity with big surface area. Finally, the modified electrode exhibited excellent performances for rutin detection with wider linear range (8.0×10−9 mol L−1–2.0×10−6 mol L−1 and 2.0×10−6 mol L−1–1.5×10−4 mol L−1) and lower detection limit (2.7 nmol L−1, 3S0/S). The Nafion/GDY-IL/Au electrode showed good sensitivity and high selectivity, which was satisfactory in analytical application to real samples. Therefore, the GDY-IL composite modified electrode has the potential applications in the POCT for electrochemical analysis of various medicinal molecules.  相似文献   

16.
The present work describes the development of a photoelectrochemical sensor based on titanium dioxide, cadmium telluride quantum dots and the tris (2,2′-bipyridyl) ruthenium(II) chloride complex for detection of Isoniazid (INH). The Ru(bpy)32+/CdTe-QDs/TiO2/FTO photoelectrochemical platform was characterized by scanning electrochemical microscopy, electrochemical impedance spectroscopy and amperometry. The photoelectrochemical sensor presented two linear ranges for INH concentrations ranging from 0.5 to 150 μmol L−1 and 150 to 1270 μmol L−1, with a theoretical detection limit of 0.02 μmol L−1. The sensor was successfully applied for the determination of INH in drugs samples used in the treatment of tuberculosis.  相似文献   

17.
The novel method of amoxicillin (AM) determination has been developed using single-sweep polarography. The proposed method is based on the obtaining of yellow coloured azo compound due to azo coupling reaction of previous diazotized sulphanilamide (SA) (in the medium of 0.6 M hydrochloric acid) with amoxicillin at pH=9.0 with the further reduction of the formed analytical form on a dropping mercury electrode. Voltammetric determination of amoxicillin is carried out due to the reduction peak of azo group of the obtained azo compound in the presence of 0.05 mol ⋅ L−1 Na2B4O7 as a background electrolyte at the potential Ecp2=−0.55 V and potential sweep rate of 2.5 V ⋅ s−1. The developed voltammetric method has two linear ranges of the determined concentrations (0.05–2.0) ⋅ 10−5 mol ⋅ L−1 and (0.2–1.0) ⋅ 10−4 mol ⋅ L−1 and the high sensitivity: LOD without the removing of unreacted sodium nitrite is 1.1 ⋅ 10−6 mol ⋅ L−1, and 7.2 ⋅ 10−7 mol ⋅ L−1, when NaNO2 excess is removed using urea. The developed voltammetric technique of AM determination has been approved during the analyses of tablets and oral suspension.  相似文献   

18.
The second order voltammetric technique of high resolution, Differential Alternative Pulses Voltammetry (DAPV), was applied for the simultaneous determination of hydroquinone (HQ) and catechol (CC) on bare spectroscopic graphite electrode. Well resolved anodic and cathodic peaks situated on both sides of the zero line were obtained, while the differential pulse voltammograms were overlapped. The linear concentration range for HQ and CC quantification by DAPV was extended up to 20 μmol L−1 for both the isomers. The sensitivity of the determination was found to be 6.00 μA L μmol−1 and 3.61 μA L μmol−1, while the limit of detection reached was 0.2 μmol L−1 and 0.5 μmol L−1 for HQ and CC, respectively. No interference was observed from the commonly coexisting organic species such as resorcinol, phenol and p‐benzoquinone. The great resolution power of DAPV permitted obtaining excellent results without any electrode modification and any mathematical data processing.  相似文献   

19.
A simple and sensitive high‐performance liquid chromatographic procedure for the determination of the trans isomer of glimepiride is reported. Chromatography accomplished direct separation of the cis and trans isomers of glimepiride on a Dikmonsil C18 (250×4.6 mm, 5 μm) column with a mobile phase consisting of methanol‐acetonitrile‐NH4Ac buffer solution (1.5 mol L–1, pH = 4.5) (1.1 : 1.3 : 1.0, v/v) at a flow rate 0.5 mL min–1. The resolution (RS) was 1.73 with a retention time of 24.885 and 23.018 min for the cis and the trans isomer, respectively. A standard linear calibration curve was established for the trans isomer of glimepiride over the range of 4.95–198.00 μg mL–1 with a correlation coefficient of 0.99997. This method has been successfully used to analyze four different kinds of glimepiride product.  相似文献   

20.
A square-wave voltammetric method was developed for the determination of creatinine using glassy carbon electrode functionalized multi-walled carbon nanotubes and doped with copper. Since the creatine-creatinine balance is dependent on pH, the linear responses at either pH 4.0 or 7.0 were evaluated allowing versatility in application, covering analyte concentration from limit of quantification (0.3 μmol L−1) up to 1.200 μmol L−1 (pH 4) or 660 μmol L−1 (pH 7). Electrode is simple to prepare and robust for routine analysis and it was used for the determination of creatinine in urine after simple thin-layer separation procedure to avoid interference from creatine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号