首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an electrical actuation scheme of dielectric droplet by negative liquid dielectrophoresis. A general model of lumped parameter electromechanics for evaluating the electromechanical force acting on the droplets is established. The model reveals the influence of actuation voltage, device geometry, and dielectric parameter on the actuation force for both conductive and dielectric medium. Using this model, we compare the actuation forces for four liquid combinations in the parallel-plate geometry and predict the low voltage actuation of dielectric droplets by negative dielectrophoresis. Parallel experimental results demonstrate such electric actuation of dielectric droplets, including droplet transport, splitting, merging, and dispending. All these dielectric droplet manipulations are achieved at voltages < 100 Vrms. The frequency dependence of droplet actuation velocity in aqueous solution is discussed and the existence of surfactant molecules is believed to play an important role by realigning with the AC electric field. Finally, we present coplanar manipulation of oil and water droplets and formation of oil-in-water emulsion droplet by applying the same low voltage.  相似文献   

2.
Tsai SL  Hong JL  Chen MK  Jang LS 《Electrophoresis》2011,32(11):1337-1347
This work presents a microfluidic system that can transport, concentrate, and capture particles in a controllable droplet. Dielectrophoresis (DEP), a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field, is used to manipulate particles. Liquid dielectrophoresis (LDEP), a phenomenon in which a liquid moves toward regions of high electric field strength under a non-uniform electric field, is used to manipulate the fluid. In this study, a mechanism of droplet creation presented in a previous work that uses DEP and LDEP is improved. A driving electrode with a DEP gap is used to prevent beads from getting stuck at the interface between air and liquid, which is actuated with an AC signal of 200 V(pp) at a frequency of 100 kHz. DEP theory is used to calculate the DEP force in the liquid, and LDEP theory is used to analyze the influence of the DEP gap. The increment of the actuation voltage due to the electrode with a DEP gap is calculated. A set of microwell electrodes is used to capture a bead using DEP force, which is actuated with an AC signal of 20 V(pp) at a frequency of 5 MHz. A simulation is carried out to investigate the dimensions of the DEP gap and microwell electrodes. Experiments are performed to demonstrate the creation of a 100-nL droplet and the capture of individual 10-μm polystyrene latex beads in the droplet.  相似文献   

3.
The emergence of optofluidics has brought a high degree of tuneability and reconfigurability to optical devices. These possibilities are provided by characteristics of fluids including mobility, wide range of index modulation, and abrupt interfaces that can be easily reshaped. In this work, we created a new class of optofluidic waveguides, in which suspended mesoparticles were employed to greatly enhance the flexibility of the system. We demonstrated tuneable quasi single mode waveguides using spatially controllable mesoparticles in optofluidics. The coupling of waveguiding modes into the assembly of mesoparticles produces strong interactions and resonant conditions, which promote the transitions of the waveguiding modes. The modal response of the system depends on the distribution of packed particles above the polymeric rib waveguide which can be readily controlled under the appropriate combination of dielectrophoresis and hydrodynamic forces.  相似文献   

4.
Urdaneta M  Smela E 《Electrophoresis》2007,28(18):3145-3155
A novel method of modeling multiple frequency dielectrophoresis (MFDEP) is introduced based on the concept of an effective Clausius-Mossotti factor, CM(eff), for a particle that is exposed to electrical fields of different frequencies, coming either from one or multiple pairs of electrodes. This analysis clearly illustrates how adding frequencies adds control parameters, up to two additional parameters per frequency. As a result, MFDEP can be used for a wide variety of applications, including separating particles with very similar Clausius-Mossotti spectra, trapping multiple groups of cells simultaneously, and cancelling unwanted dielectrophoretic traps. Illustrating the modeling approach, we determine the CM(eff)s for live and dead yeast cells, and then predict their equilibrium distribution on a three-electrode configuration, with two electrodes at different frequencies and the third electrode at ground. This prediction is validated experimentally, using MFDEP to selectively attract live cells to one location and dead cells to another, trapping both. These results demonstrate that the use of multiple frequencies for the manipulation of particles can enhance the performance of dielectrophoretic devices, not only for sorting, but also for such applications as patterning cells in close proximity for the formation of cell consortia.  相似文献   

5.
6.
The assembly of carbon nanotubes (CNTs) across planner electrodes using dielectrophoresis (DEP) is one of the standard methods used to fabricate CNT-based devices such as sensors. The medium drag velocity caused by electrokinetic phenomena such as electrothermal and electroosmotic might drive CNTs away from the deposition area. This problem becomes critical at large-scale electrode structures due to the high attenuation of the DEP force. Herein, we simulated and experimentally validated a novel DEP setup that uses a top glass cover to minimize the medium drag velocity. The simulation results showed that the drag velocity can be reduced by 2–3 orders of magnitude compared with the basic DEP setup. The simulation also showed that the optimum channel height to result in a significant drag velocity reduction was between 100 μm and 240 μm. We experimentally report, for the first time, the assembly and alignment of CNT bridges across indium tin oxide (ITO) electrodes with spacing up to 125 μm. We also derived an equation to optimize the CNT's concentration in suspensions based on the electrode gap width and channel height. The deposition of long CNTs across ITO electrodes has potential use in transparent electronics and microfluidic systems.  相似文献   

7.
Wirelessly powered dielectrophoresis (DEP) of metal oxide particles was performed using a spark-gap Tesla coil (TC). The main contribution of this work is the simplification of the conventional DEP setup that requires attaching wires directly to the electrodes. Wireless power from the TC generates a high output frequency and voltage, which corresponds to that used for the DEP. Therefore, a spark-gap TC was built and utilized to conduct the DEP process. Metal oxides (ZnO and Fe2O3) were used as targets for the assembly. The results showed that the wirelessly powered DEP technique via a TC was successful in assembling the metal oxide particles. Positive and negative DEP phenomena were observed. Positive DEP occurred during ZnO assembly, making particles chain grow 0.92 mm toward the sparks within 60 s. Negative DEP was observed during Fe2O3 assembly, where the repulsion of particles formed a void around the sparks with a 1.45 mm radius. The mechanism of this wireless DEP system is discussed.  相似文献   

8.
A microfluidic chip for multistep manipulations of PMMA submicron particles (PMMA‐SMPs) based on dielectrophoresis (DEP) has been developed that includes four main functions of focusing, guiding, trapping, and releasing the SMPs. The structure of the DEP chip consists of a top electrode made of indium tin oxide, a flow chamber formed by optically clear adhesive tape and bottom electrodes with different patterns for different purposes. The bottom electrodes can be divided into three parts: a fish‐bone‐type electrode array that provides the positive DEP force for focusing the suspended nanoparticles (NPs) near the inlet in the flow chamber; the second is for switching and guiding the focused NPs along the electrode surface to the target area, like a flow passing along a virtual channel; and a trapping electrode in the downstream for trapping and releasing the guided NPs. According to the simulation and experimental results, NPs can be aligned along the electrode of the focusing electrode and guided toward the target electrode by means of a positive DEP force between the top and bottom electrodes, with the effects of Brownian motion and Stokes force. In order to demonstrate the sequence of DEP manipulations, a PMMA‐NP suspension is introduced to the DEP chip; the size of the PMMA‐SMPs is about 300 nm. Furthermore, a LabVIEW program developed for sequence control of the AC signals for the multistep manipulations. Consequently, the DEP chip provides an excellent platform technology for the multistep manipulation of SMPs.  相似文献   

9.
Isomotive dielectrophoresis (isoDEP) is a unique DEP geometrical configuration where the gradient of the field-squared () is constant. IsoDEP analyzes polarizable particles based on their magnitude and direction of translation. Particle translation is a function of the polarizability of both the particles and suspending medium, the particles’ size and shape, and the frequency of the electric field. However, other electrokinetics act on the particles simultaneously, including electrothermal hydrodynamics. Hence, to maximize the DEP force relative to over electrokinetic forces, design parameters such as microchannel geometry, fabrication materials, and applied electric field must be properly tuned. In this work, scaling law analyses were developed to derive design rules, relative to particle diameter, to reduce unwanted electrothermal hydrodynamics relative to DEP-induced particle translation. For a particle suspended in 10 mS/m media, if the channel width and height are below ten particle diameters, the electrothermal-driven flow is reduced by ∼500 times compared to a channel that is 250 particles diameters in width and height. Replacing glass with silicon as the device's underlying substrate for an insulative-based isoDEP reduces the electrothermal induced flow approximately 20 times less.  相似文献   

10.
Studies of particle electrophoresis have so far been limited to primarily theoretical or numerical analyses in straight microchannels. Very little work has been done on particle electrophoretic motions in real microchannels that may have one or multiple turns for reducing the devices size or achieving other functions. This article presents an experimental and numerical study of particle electrophoresis in curved microchannels. Polystyrene microparticles are found to migrate across streamlines and flow out of a spiral microchannel in a focused stream near the outer wall. This transverse focusing effect arises from the dielectrophoretic particle motion induced by the nonuniform electric field intrinsic to curved channels. The experimental observations agree quantitatively with the numerical predictions.  相似文献   

11.
Electrokinetically driven insulator-based microfluidic devices represent an attractive option to manipulate particle suspensions. These devices can filtrate, concentrate, separate, or characterize micro and nanoparticles of interest. Two decades ago, inspired by electrode-based dielectrophoresis, the concept of insulator-based dielectrophoresis (iDEP) was born. In these microfluidic devices, insulating structures (i.e., posts, membranes, obstacles, or constrictions) built within the channel are used to deform the spatial distribution of an externally generated electric field. As a result, particles suspended in solution experience dielectrophoresis (DEP). Since then, it has been assumed that DEP is responsible for particle trapping in these devices, regardless of the type of voltage being applied to generate the electric field—direct current (DC) or alternating current. Recent findings challenge this assumption by demonstrating particle trapping and even particle flow reversal in devices that prevent DEP from occurring (i.e., unobstructed long straight channels stimulated with a DC voltage and featuring a uniform electric field). The theory introduced to explain those unexpected observations was then applied to conventional “DC-iDEP” devices, demonstrating better prediction accuracy than that achieved with the conventional DEP-centered theory. This contribution summarizes contributions made during the last two decades, comparing both theories to explain particle trapping and highlighting challenges to address in the near future.  相似文献   

12.
《Electrophoresis》2017,38(13-14):1755-1763
Thrombogenesis (blood clot formation) is a major barrier to the development of biomedical devices that interface with blood. Although state‐of‐the‐art chemically and pharmacologically mediated clot mitigation strategies are effective, some limitations of such approaches include depletion of active agents, or adverse reactions in patients. Increased clotting protein adsorption and platelet adhesion, which occur when artificial surfaces are exposed to blood result in enhanced clot formation on artificial surfaces. It is hypothesized that repelling proteins and platelets using dielectrophoresis (DEP), a contact‐free particle manipulation technique, will reduce clot formation in biomedical devices. In this paper, the effect of DEP on thrombogenesis in human blood is investigated. Undiluted whole blood from human donors is pumped through microchannels at a physiological shear rate (400 s −1). Experiments are performed by applying 0 V, 0.5 Vrms , 2 Vrms , and 3 Vrms to electrodes in the channel. Clot formation is observed to decrease in experiments in which DEP electrodes are active (average of 6% coverage @ 0V reduced to 0.08% coverage @ 3 Vrms ). Repulsion is more effective at higher voltages. DEP causes a quantifiable reduction in microscopic and macroscopic clot formation in PDMS microchannels.  相似文献   

13.
Aldaeus F  Lin Y  Roeraade J  Amberg G 《Electrophoresis》2005,26(22):4252-4259
One of the major applications for dielectrophoresis is selective trapping and fractionation of particles. If the surrounding medium is of low conductivity, the trapping force is high, but if the conductivity increases, the attraction decreases and may even become negative. However, high-conductivity media are essential when working with biological material such as living cells. In this paper, some basic calculations have been performed, and a model has been developed which employs both positive and negative dielectrophoresis in a channel with interdigitated electrodes. The finite element method was utilized to predict the trajectories of Escherichia coli bacteria in the superpositioned electrical fields. It is shown that a drastic improvement of trapping efficiency can be obtained in this way, when a high conductivity medium is employed.  相似文献   

14.
Droplet microfluidics has emerged as a powerful tool for a diverse range of biomedical and industrial applications such as single-cell analysis, directed evolution, and metabolic engineering. In these applications, droplet sorting has been effective for isolating small droplets encapsulating molecules, cells, or crystals of interest. Recently, there is an increased interest in extending the applicability of droplet sorting to larger droplets to utilize their size advantage. However, sorting throughputs of large droplets have been limited, hampering their wide adoption. Here, we report our demonstration of high-throughput fluorescence-activated droplet sorting of 1 nL droplets using an upgraded version of the sequentially addressable dielectrophoretic array (SADA), which we reported previously. The SADA is an array of electrodes that are individually and sequentially activated/deactivated according to the speed and position of a droplet passing nearby the array. We upgraded the SADA by increasing the number of driving electrodes constituting the SADA and incorporating a slanted microchannel. By using a ten-electrode SADA with the slanted microchannel, we achieved fluorescence-activated droplet sorting of 1 nL droplets at a record high throughput of 1752 droplets/s, twice as high as the previously reported maximum sorting throughput of 1 nL droplets.  相似文献   

15.
A microfluidic lab-on-a-chip (LoC) platform for in vitro measurement of glucose for clinical diagnostic applications is presented in this paper. The LoC uses a discrete droplet format in contrast to conventional continuous flow microfluidic systems. The droplets act as solution-phase reaction chambers and are manipulated using the electrowetting effect. Glucose is measured using a colorimetric enzyme-kinetic method based on Trinder’s reaction. The color change is detected using an absorbance measurement system consisting of a light emitting diode and a photodiode. The linear range of the assay is 9-100 mg/dl using a sample dilution factor of 2 and 15-300 mg/dl using a sample dilution factor of 3. The results obtained on the electrowetting system compare favorably with conventional measurements done on a spectrophotometer, indicating that there is no change in enzyme activity under electrowetting conditions.  相似文献   

16.
In this work, we aim to observe and study the physics of bacteria and cancer cells pearl chain formation under dielectrophoresis (DEP). Experimentally, we visualized the formation of Bacillus subtilis bacterial pearl chain and human breast cancer cell (MCF-7) chain under positive and negative dielectrophoretic force, respectively. Through a simple simulation with creeping flow, AC/DC electric fields, and particle tracing modules in COMSOL, we examined the mechanism by which bacteria self-organize into a pearl chain across the gap between two electrodes via DEP. Our simulation results reveal that the region of greatest positive DEP force shifts from the electrode edge to the leading edge of the pearl chain, thus guiding the trajectories of free-flowing particles toward the leading edge via positive DEP. Our findings additionally highlight the mechanism why the free-flowing particles are more likely to join the existing pearl chain rather than starting a new pearl chain. This phenomenon is primarily due to the increase in magnitude of electric field gradient, and hence DEP force exerted, with the shortening gap between the pearl chain leading edge and the adjacent electrode. The findings shed light on the observed behavior of preferential pearl chain formation across electrode gaps.  相似文献   

17.
P Zellner  M Agah 《Electrophoresis》2012,33(16):2498-2507
Concentration of biological specimens that are extremely dilute in a solution is of paramount importance for their detection. Microfluidic chips based on insulator-based DEP (iDEP) have been used to selectively concentrate bacteria and viruses. iDEP biochips are currently fabricated with glass or polymer substrates to allow for high electric fields within the channels. Joule heating is a well-known problem in these substrates and can lead to decreased throughput and even device failure. In this work, we present, for the first time, highly efficient trapping and separation of particles in DC iDEP devices that are fabricated on silicon using a single-etch-step three-dimensional microfabrication process with greatly improved heat dissipation properties. Fabrication in silicon allows for greater heat dissipation for identical geometries and operating conditions. The 3D fabrication allows for higher performance at lower applied potentials. Thermal measurements were performed on both the presented silicon chips and previously published PDMS devices comprised of microposts. Trapping and separation of 1 and 2 μm polystyrene particles was demonstrated. These results demonstrate the feasibility of high-performance silicon iDEP devices for the next generation of sorting and concentration microsystems.  相似文献   

18.
Cell medium exchange is a crucial step for life science and medicine. However, conventional cell medium exchange methods, including centrifuging and filtering, show limited ability for micro-volume cell samples such as circulating tumor cell (CTC) and circulating fetal cell (CFC). In this paper, we proposed an automatic medium exchange method for micro-volume cell samples based on dielectrophoresis (DEP) in microfluidic chip. Fresh medium and cell suspension were introduced into the microfluidic channel as the laminar flow. Plane stair-shaped interdigital electrodes were employed to drive the cells from the cell suspension to fresh media directly by DEP force. Additionally, we characterized and optimized the cell medium exchange according to both the theory and experiments. In the end, we achieved a 96.9% harvest rate of medium exchange for 0.3 μL samples containing micro-volume cells. For implementing an automatic continuous cell medium exchange, the proposed method can be integrated into the automatic cell processing system conveniently. Furthermore, the proposed method is a great candidate in micro-volume cell analysis and processing, cell electroporation, single cell sequencing, and other scenarios.  相似文献   

19.
Hepatitis A virus particles (d = 27 nm) were successfully accumulated and trapped in a microfluidic system by means of a combination of electrohydrodynamic flow and dielectrophoretic forces. Electric fields were generated in a field cage consisting of eight microelectrodes. In addition, high medium conductance (0.3 S/m) resulted in sufficient Joule heating and the corresponding spatial variation of temperature, density, and permittivity to induce electrohydrodynamic flow in the vicinity of the field cage. Flow vortices transport particles toward the center of the field cage, where dielectrophoretic forces cause permanent entrapment and particle aggregation. Spatial distribution of temperature, density, and permittivity as well as resulting flow patterns were modeled numerically and are in good agreement with experimental results. This accumulation scheme might be applicable to sample concentration enhancement in biosensor applications.  相似文献   

20.
Oligonucleotides of varying surface coverage are functionalized onto the surface of 100 nm silica particles and the corresponding hybridization reaction with target ssDNA is studied using dielectrophoresis (DEP). The measured DEP cross‐over frequency (cof) is found to be sensitive to the oligonucleotide surface conformation. Zeta potential and particle size measurements suggest that at low oligo surface concentrations, non‐specific binding of oligo to the particle surface prevents efficient hybridization. At high surface coverage, steric hindrance due to the fully stretched, tightly packed oligo conformation prevents diffusion of DNA molecules to the particle surface. The optimum surface coverage exists at intermediate coverage where the particle is found to be the least electrically conductive, and hence exhibits the lowest measured cof. A simple DEP cof measurement hence allows one to determine the optimal oligo surface coverage for increased hybridization efficiency and detection sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号