首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological samples such as blood, urine, cerebrospinal fluid and saliva contain a large variety of proteins, nucleic acids, and small molecules. These molecules can serve as potential biomarkers of disease and therefore, it is desirable to simultaneously detect multiple biomarkers in one sample. Current detection techniques suffer from various limitations including low analytical sensitivity and complex sample processing. In this work, we present an ultrasensitive method for simultaneous detection of small molecules, proteins and microRNAs using single molecule arrays (Simoa). Dye-encoded beads modified with specific capture probes were used to quantify each analyte. Multiplex competitive Simoa assays were established for simultaneous detection of cortisol and prostaglandin E2. In addition, competitive and sandwich immunoassays were combined with a direct nucleic acid hybridization assay for simultaneous detection of cortisol, interleukin 6 and microRNA 141. The multi-analyte Simoa assay shows high sensitivity and specificity, which provides a powerful tool for the analysis of many different samples.

The first example of multiplexed detection of proteins, nucleic acids, and small molecules using single molecule measurement methodology.  相似文献   

2.
The lateral-flow immunoassay (LFA) is an inexpensive and rapid paper-based assay that can potentially detect infectious disease biomarkers in resource-poor settings. Despite its many advantages that make it suitable for point-of-care diagnosis, LFA is limited by its inferior sensitivity relative to sophisticated laboratory-based assays. Our group previously introduced the use of a micellar aqueous two-phase system (ATPS), comprised of the nonionic Triton X-114 surfactant, to concentrate biomarkers in a sample and enhance their detection with LFA. However, achieving complete phase separation and target concentration using the Triton X-114 system required many hours, and the concentrated sample needed to be manually extracted and applied to LFA. Here, we successfully integrated the concentration and detection steps into a single step that occurs entirely within a portable paper-based diagnostic strip. In a novel approach, we applied the micellar ATPS to a 3-D paper design and effectively reduced the macroscopic phase separation time from 8 h to approximately 3 min. The 3-D design was integrated with LFA to simultaneously concentrate and detect Plasmodium lactate dehydrogenase (pLDH), a malaria biomarker, in both phosphate-buffered saline and fetal bovine serum within 20 min at room temperature. Compared to a conventional LFA setup with a pLDH detection limit of 10 ng μL−1, our single-step diagnostic successfully detected pLDH at 1.0 ng μL−1, demonstrating a 10-fold detection limit improvement and resulting in a sensitive and user-friendly assay that can be used at the point-of-care. The integration of a micellar ATPS and LFA represents a new platform that can improve and promote the use of paper-based diagnostic assays for malaria and other diseases within resource-poor settings.  相似文献   

3.
The detection of nucleic acid biomarkers for point‐of‐care (POC) diagnostics is currently limited by technical complexity, cost, and time constraints. To overcome these shortcomings, we have combined loop‐mediated isothermal amplification (LAMP), programmable toehold‐mediated strand‐exchange signal transduction, and standard pregnancy test strips. The incorporation of an engineered hCG–SNAP fusion reporter protein (human chorionic gonadotropin‐O6‐alkylguanine‐DNA alkyltransferase) led to LAMP‐to‐hCG signal transduction on low‐cost, commercially available pregnancy test strips. Our assay reliably detected as few as 20 copies of Ebola virus templates in both human serum and saliva and could be adapted to distinguish a common melanoma‐associated SNP allele (BRAF V600E) from the wild‐type sequence. The methods described are completely generalizable to many nucleic acid biomarkers, and could be adapted to provide POC diagnostics for a range of pathogens.  相似文献   

4.
Procalcitonin (PCT)—a diagnostic serum parameter for bacterial infection and sepsis—is of great interest in the field of biosensors for point-of-care testing. Its detection needs specific biological recognition elements, such as antibodies. Herein, we describe the development and characterization of rat monoclonal antibodies (mAbs) for PCT, and their application in enzyme-linked immunosorbent assays (ELISAs) for the determination of PCT in patient serum samples. From about 50 mAbs, two mAbs, CALCA 2F3 and CALCA 4A6, were selected as a pair with high affinity for PCT in sandwich immunoassays. Both mAbs could be used either as capture or as detection mAb. They were Protein G-purified and biotinylated when used as detection mAb. The setup of two sandwich ELISAs with standards of human recombinant (hr) PCT, using either CALCA 2F3 (assay A) or CALCA 4A6 (assay B) as capture mAbs and the biotinylated mAbs CALCA 4A6 or CALCA 2F3, respectively, as detection mAbs, led to highly specific determinations of PCT without cross-reactivity to calcitonin and katacalcin. Test midpoints (IC50) of both assays were determined for hrPCT standards in 4% (w/v) human serum albumin and found with 2.5 (assay A) and 2.7 μg L−1 (assay B). With both sandwich ELISAs a collection of eight patient serum samples have been determined in comparison to the determination by the Elecsys BRAHMS PCT assay. Good correlations between our prototype ELISAs and the BRAHMS assay could be demonstrated (R 2: assay A, 0.996 and assay B, 0.990). The use of these newly developed anti-PCT mAbs should find broad applications in immunosensors for point-of-care diagnostics of sepsis and systemic inflammation processes.  相似文献   

5.
6.
Preeclampsia is a heterogeneous and multiorgan cardiovascular disorder of pregnancy. Here, we report the development of a novel strip-based lateral flow assay (LFA) using lanthanide-doped upconversion nanoparticles conjugated to antibodies targeting two different biomarkers for detection of preeclampsia. We first measured circulating plasma FKBPL and CD44 protein concentrations from individuals with early-onset preeclampsia (EOPE), using ELISA. We confirmed that the CD44/FKBPL ratio is reduced in EOPE with a good diagnostic potential. Using our rapid LFA prototypes, we achieved an improved lower limit of detection: 10 pg ml−1 for FKBPL and 15 pg ml−1 for CD44, which is more than one order lower than the standard ELISA method. Using clinical samples, a cut-off value of 1.24 for CD44/FKBPL ratio provided positive predictive value of 100 % and the negative predictive value of 91 %. Our LFA shows promise as a rapid and highly sensitive point-of-care test for preeclampsia.  相似文献   

7.
8.
At pH 9.75, the resonance light scattering (RLS) intensity of OA–Eu3+ system is greatly enhanced by nucleic acid. Based on this phenomenon, a new quantitative method for nucleic acid in aqueous solution has been developed. Under the optimum condition, the enhanced RLS is proportional to the concentration of nucleic acid in the range of 1.0 × 10−9 to 1.0 × 10−6 g/ml for herring sperm DNA, 8.0 × 10−10 to 1.0 × 10−6 g/ml for calf thymus DNA and 1.0 × 10−9 to 1.0 × 10−6 g/ml for yeast RNA, and their detection limits are 0.020, 0.011 and 0.010 ng/ml, respectively. Synthetic samples and actual samples were satisfactorily determined. In addition, the interaction mechanism between nucleic acid and OA–Eu3+ is also investigated.  相似文献   

9.
《Analytical letters》2012,45(11-12):1311-1321
Abstract

Conductometric titrations of chlorhexidine and proguanil are reported. The procedure is based on the copper-bi-guanide reaction which gives a pink solid. Studies at several pH values, and presence of NH3 and ethanol are carried out. 3 ml of 0.2 M NH3, 9ml of 0.01 M NaOH diluted to 60 mL with 15% ethanol are added to 5ml of biguenide aqueous solution and titrated awith cooper acetate. Concentrations of Chlorhexidine in 5.9x10?5 - 3.4x10?4 M range are determined. Fareignspecies presence is studied too.

Biguanides are found in several pharmaceutical formulations and industrial samples.

Estimetion of chlorhexidine and proguanil salts with the standard method lacks selectivity since it is based on perchloric acid titration in acetic acid medium1. Some recent papers about determination of chlorhexidine and proguanil have been publisghed: potentiometric titration of chlorhexidine2 polarographic determinetion of praguanil and chlorhexidine3,4 spectrophotometric assay of chlorhexidine in contact lens solutions5 and suppositories6, HPLC of proguanil in serum sam-ples7 and chlorhexidine in several samples 8,9,10,10,11 or G C 12,13 and mass fragmentography14,15.  相似文献   

10.
Techniques that combine nucleic acid amplification with an antibody-based assay can dramatically increase the sensitivity of conventional immunoassays. This review summarizes the methodology and applications of one such protein detection technique that has been used for the past 23 years—the immuno-polymerase chain reaction (usually referred to as immuno-PCR or IPCR). The key component of an immuno-PCR is a DNA–antibody conjugate that serves as a bridge to link the solid-phase immunoreaction with nucleic acid amplification. The efficiency of immuno-PCR enables a 10- to 109-fold increase in detection sensitivity compared with that of ELISA. Advancements in immuno-PCR have included improvements of production of the DNA–antibody conjugate, assay formats, and readout methods. As an ultrasensitive protein assay, immuno-PCR has a broad range of applications in immunological research and clinical diagnostics.  相似文献   

11.
Jans H  Jans K  Demeyer PJ  Knez K  Stakenborg T  Maes G  Lagae L 《Talanta》2011,83(5):5-1585
In this study a double-bead sandwich assay, employing magnetic nanoparticles and gold nanoparticles is proposed. The magnetic nanoparticles allow specific capturing of the analyte in biological samples, while the optical properties of the gold nanoparticles provide the signal transduction. We demonstrated that a major improvement in the assay sensitivity was obtained by selecting an optimal gold nanoparticle size (60 nm). A detection limit of 5-8 ng/mL, a sensitivity of 0.6-0.8 (pg/mL)−1 and a dynamic range of 3 orders of magnitude were achieved without any further amplification using the detection of prostate specific antigen in serum as a model system. The proposed assay has the ability to be easily implemented within a microfluidic device for point-of-care applications whereby the readout can be executed by a fast and cheap optical measurement.  相似文献   

12.
The accurate quantification of nucleic acids is essential in many fields of modern biology and industry, and in some cases requires the use of fluorescence labeling. Yet, in addition to standardization problems and quantification reproducibility, labeling can modify the physicochemical properties of molecules or affect their stability. To address these limitations, we have developed a novel method to detect and quantify label-free nucleic acids. This method is based on stoichiometric proportioning of phosphorus in the nucleic acid skeleton, using laser-induced breakdown spectroscopy, and a specific statistical analysis, which indicates the error probability for each measurement. The results obtained appear to be quantitative, with a limit of detection of 105 nucleotides/µm2 (i.e. 2 × 1013 phosphorus atoms/cm2). Initial micro-array analysis has given very encouraging results, which point to new ways of quantifying hybridized nucleic acids. This is essential when comparing molecules of different sequences, which is presently very difficult with fluorescence labeling.  相似文献   

13.
A rapid and cost-effective screening method based on a competitive enzyme-linked aptamer assay (ELAA) for dopamine (DA) in serum has been optimized and validated. In this paper, we report advantageous sensitivity and specificity of aptamer assays as compared to the existing antibody based-immunoassays. The RNA aptamer (67 mer) was immobilized via site-directed immobilization with biotin both at the 3′-end on aptamer and at neutravidin plate. Various factors such as incubation temperature, divalent ion – Mg2+ ion and treatment of serum solution were evaluated for the performance of ELAA. The aptamer was incubated for 1 h at 4 °C in the assay buffer containing 5 mM Mg2+ ion, and serum was diluted (1:9, serum:assay buffer) and filtrated through a 3 kDa dialysis membrane to extract the proteins present in the serum. Assay was performed with 0.01 μg mL−1 of aptamer and 1.205 × 10−7 M DA-HRP conjugate using the optimized method. A dose–response curve was constructed, and the limit of detection and a dynamic range for the DA were determined as 1.0 × 10−12 M and four orders (1.0 × 10−7 M to 5.0 × 10−11 M) of magnitude, respectively. The correlation diagram of the absorbance obtained both in buffer and in serum has shown a good agreement with the correlation coefficient (R2 = 0.9872): Abs. (in serum) = 0.9612 × Abs. (in buffer) − 0.0556. The cross-reactivity evaluation demonstrated that norepinephrine showed some cross-reactivity (3.68%) whereas 3-methoxytyramine, epinephrine, homovanillic acid and 3,4-dihydroxyphenylacetic acid showed almost no cross-reactivity (<1%). Percent recoveries of DA in serum were quite satisfactory (∼95%). This paper describes usefulness of the aptamer assay in monitoring DA in human serum.  相似文献   

14.
《Analytical letters》2012,45(9):857-871
ABSTRACT

Serum albumins are known to catalyze the hydrolysis of aryl esters. Both human and bovine albumins are active against Naphthol AS acetate, resulting in a fluorescence excited at 320 nm and monitored at 500 nm. HSA was more active than BSA. At pH 8.0 the reaction is activated by cetyltrimethylammonium bromide. Other esterases in serum require either calcium or a higher pH for activity. The assay is conducted with albumin diluted to about 10?7 M or less, thus dissociating many potentially interfering ligands. Palmitic acid did not interfere. The interference by bilirubin is minimized by using highly dilute albumin. The present method gives results with serum which correlate well with the widely used Bromcresol Green method. Limit of detection for HSA is 14 picomoles.  相似文献   

15.
Alpha-fetoprotein (AFP), a primary marker for many diseases including various cancers, is important in clinical tumor diagnosis and antenatal screening. Most immunoassays provide high sensitivity and accuracy for determining AFP, but they are expensive, often complex, time-consuming procedures. A simple and rapid point-of-care system that integrates Eu (III) chelate microparticles with lateral flow immunoassay (LFIA) has been developed to determine AFP in serum with an assay time of 15 min. The approach is based on a sandwich immunoassay performed on lateral flow test strips. A fluorescence strip reader was used to measure the fluorescence peak heights of the test line (HT) and the control line (HC); the HT/HC ratio was used for quantitation. The Eu (III) chelate microparticles-based LFIA assay exhibited a wide linear range (1.0–1000 IU mL−1) for AFP with a low limit of detection (0.1 IU mL−1) based on 5ul of serum. Satisfactory specificity and accuracy were demonstrated and the intra- and inter-assay coefficients of variation (CV) for AFP were both <10%. Furthermore, in the analysis of human serum samples, excellent correlation (n = 284, r = 0.9860, p < 0.0001) was obtained between the proposed method and a commercially available CLIA kit. Results indicated that the Eu (III) chelate microparticles-based LFIA system provided a rapid, sensitive and reliable method for determining AFP in serum, indicating that it would be suitable for development in point-of-care testing.  相似文献   

16.
A liquid chromatographic method for the determination of meloxicam in serum has been developed. The technique includes a solid phase extraction of the serum samples on [poly (divinylbenzeneco-N-vinylpyrrolidone)] as a solid phase extraction sorbent. After conditioning, the cartridge was loaded with 1 mL of acidified serum containing an internal standard. Elution was carried out using 1 mL of water-acetonitrile (φ r = 1: 1) mixture. After evaporation of the eluate to dryness and reconstitution of the residue with 0.1 mL of methanol, the samples were analyzed on a Symmetry C18 column. Mobile phase consisted of 1 % aqueous acetic acid/THF/acetonitrile (φ r = 60: 30: 10) + 0.1 mL of 1-octane sulfonic acid. Detection was carried out using a photodiode array detector. Full validation of the proposed method is provided. Linearity of the method was proven over the range of 0.01–10 φg mL−1 of meloxicam. Meloxicam assay was accurate and reliable with average intra- and inter-day precisions lower than 5.0 % and the intra- and inter-day accuracy higher than 97 %. Limits of detection (LOD) and quantitation (LOQ) found were 0.003 μg mL−1 and 0.01 μg mL−1, respectively. The proposed method was successfully utilized to quantify meloxicam in serum.  相似文献   

17.
Development of rapid screening in the ambulatory environment is the most pressing needs for the control of spread of infectious disease. Despite there are many methods to detect the immunoassay results, quantitative measurement in rapid disease screening is still a great challenge for point-of-care applications. In this work, based on the internal structural protein, i.e., nucleoprotein (NP), and outer surface glycoproteins, i.e., H1 and H3, of the influenza viruses, specific and sensitive immunoassay on paper-based platform was evaluated and confirmed. Detection and subtyping of influenza A H1N1 and H3N2 viruses found in people were demonstrated by colorimetric paper-based sandwich immunoassay. Concentration-dependent response to influenza viruses was shown and the detection limits could achieve 2.7 × 103 pfu/assay for H1 detection and 2.7 × 104 pfu/assay for H3 detection, which are within the clinical relevant level. Moreover, detection of influenza virus from infected cell lysate and clinical samples was demonstrated to further confirm the reliability of the paper-based immunoassay. The use of paper for the development of diagnostic devices has the advantages of lightweight, ease-of-use, and low cost and paper-based immunoassay is appropriate to apply for rapid screening in point-of-care applications.  相似文献   

18.
Mucin-16 (MUC16) is the established ovarian cancer marker used to follow the disease during or after treatment for epithelial ovarian cancer. The emerging science of cancer markers also demands for the new sensitive detection methods. In this work, we have developed an electrochemical immunosensor for antigen MUC16 using gold nanoelectrode ensemble (GNEE) and ferrocene carboxylic acid encapsulated liposomes tethered with monoclonal anti-Mucin-16 antibodies (αMUC16). GNEEs were fabricated by electroless deposition of the gold within the pores of polycarbonate track-etched membranes. Afterwards, αMUC16 were immobilized on preformed self-assembled monolayer of cysteamine on the GNEE via cross-linking with EDC-Sulfo-NHS. A sandwich immunoassay was performed on αMUC16 functionalized GNEE with MUC16 and immunoliposomes. The differential pulse voltammetry was employed to quantify the faradic redox response of ferrocene carboxylic acid released from immunoliposomes. The dose–response curve for MUC16 concentration was found between the range of 0.001–300 U mL−1. The lowest detection limit was found to be 5 × 10−4 U mL−1 (S/N = 3). We evaluated the performance of this developed immunosensor with commercial ELISA assay by comparing results obtained from spiked serum samples and real blood serum samples from volunteers.  相似文献   

19.
Calcineurin inhibitor nephrotoxicity, especially for the widely used tacrolimus, has become a major concern in post‐transplant immunosuppression. Multiparametric amino acid metabolomics is useful for biomarker identification of tacrolimus nephrotoxicity, for which specific quantitative methods are highlighted as a premise. This article presents a targeted metabolomic assay to quantify 33 amino acids and biogenic amines in human urine by high‐performance liquid chromatography coupled with tandem mass spectrometry. Chromatographic separation was carried out on an Agilent Zorbax SB‐C18 column (3.0 × 150 mm, 5 μm) with addition of an ion‐pairing agent in the mobile phase, and MS/MS detection was achieved in both the positive and negative multiple reaction monitoring modes. Good correlation coefficients (r2 > 0.98) were obtained for most analytes. Intra‐ and inter‐day precision, stability, carryover and incurred sample reanalysis met with the acceptance criteria of the guidance of the US Food and Drug Administration. Analysis on urine from healthy volunteers and renal transplantation patients with tacrolimus nephrotoxicity confirmed symmetric dimethylarginine and serine as biomarkers for kidney injury, with AUC values of 0.95 and 0.81 in receiver operating characteristic analysis, respectively. Additionally, symmetric dimethylarginine exhibited a tight correlation with serum creatinine, and was therefore indicative of renal function. The targeted metabolomic assay was time and cost prohibitive for amino acid analysis in human urine, facilitating the biomarker identification of tacrolimus nephrotoxicity.  相似文献   

20.
Guanidinoacetate methyltransferase deficiency is a recently discovered inborn defect of creatine biosynthesis which reduces serum creatinine concentrations to as low as 0.58 μg mL−1 (or 0.00058 μg mL−1 after 1,000-fold dilution). To measure ultra trace levels of creatinine in diluted samples, molecularly imprinted solid-phase extraction (MISPE) and molecularly imprinted polymer (MIP) sensor techniques have been found to be inadequate. A combination of these techniques (i.e. MISPE hyphenated with use of an MIP-sensor), reported in this paper, has been found to be highly suitable for direct assay of creatinine in highly diluted human blood serum without complicated pretreatment of the sample. The proposed technique has the potential to enhance the sensitivity of creatinine measurement from μg mL−1 to ng mL−1 in highly dilute aqueous samples in which the concentrations of interfering constituents are reduced to negligible levels. In this work the sensitivity to creatinine was found to be improved compared with that of the MIP-sensor method alone (limit of detection, LOD, 0.00149 μg mL−1). After preconcentration by MISPE and use of the sensor the detection limit for creatinine was as low as 0.00003 μg mL−1 (RSD = 0.94%, S/N = 3; 50-fold preconcentration factor) in aqueous samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号