首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we report a non-enzymatic glucose sensor field-effect transistor (FET) based on vertically-oriented zinc oxide nanorods modified with iron oxide (Fe2O3-ZNRs). Compared with ZnO-based non-enzymatic glucose sensors, which show poor sensing performances, modification of ZnO with Fe2O3 dramatically enhances the sensing behavior of the fabricated non-enzymatic FET glucose sensor due to the excellent electrocatalytic nature of Fe2O3. The fabricated non-enzymatic FET sensor showed excellent catalytic activity for glucose detection under optimized conditions with a linear range up to 18 mM, detection limits down to ~ 12 μM, excellent selectivity, good reproducibility and long-term stability. Moreover, the fabricated FET sensor detected glucose in freshly drawn mouse whole blood and serum samples. The developed FET sensor has practical applications in real samples and the solution-based synthesis process is cost effective.  相似文献   

2.
Herein, a novel electrochemical sensor for glucose and hydrogen peroxide (H2O2) detection was successfully developed through the use of Cu nanoflowers (CuNFs) combined with flexible carbon cloth (CC) substrate. The 3D flower-like CuNFs in size uniformly and firmly grow on CC substrate by a facile, scalable, one-step hydrothermal strategy. Morphology, size and surface property of the prepared CuNFs/CC were examined by SEM, EDS and TEM, respectively. The electrochemical mechanism of CuNFs/CC for glucose and H2O2 detection was investigated by cyclic voltammetry. High electrochemical performances were displayed with amperometric i-t curves including a wide linear range from 1.0 nM to 6.0 mM for glucose and from 1.0 μM to 36.66 mM for H2O2, respectively. Good sensitivity, repeatability, and stability, as well as anti-interference ability, the carbon cloth-supported CuNFs will be the promising materials for fabricating practical non-enzymatic glucose and H2O2 sensors.  相似文献   

3.
Nitrogen and phosphorus co‐doped hierarchical micro/mesoporous carbon (N,P‐MMC) was prepared by simple thermal treatment of freeze‐dried okra in the absence of any other additives. The 0.96 wt % of N and 1.47 wt % of P were simultaneously introduced into the graphitic framework of N,P‐MMC, which also possesses hierarchical porous structure with mesopores centered at 3.6 nm and micropores centered at 0.79 nm. Most importantly, N,P‐MMC carbon exhibits excellent catalytic activity for electrocatalytic reduction of H2O2, resulting in a new strategy to construct non‐enzymatic H2O2 sensor. The N,P‐MMC‐based H2O2 sensor displays two linear detection range about 0.1 mM–10 mM (R2=0.9993) and 20 mM–200 mM (R2=0.9989), respectively. The detection limit is estimated to be 6.8 μM at a signal‐to‐noise ratio of 3. These findings provide insights into synthesizing functional heteroatoms doped porous carbon materials for biosensing applications.  相似文献   

4.
《Electroanalysis》2017,29(6):1518-1523
A sensitive and selective amperometric H2O2 biosensor was obtained by utilizing the electrodeposition of Pt flowers on iron oxide‐reduced graphene oxide (Fe3O4/rGO) nanocomposite modified glassy carbon electrode (GCE). The morphology of Fe3O4/rGO and Pt/Fe3O4/rGO was characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. The step‐wise modification and the electrochemical characteristics of the resulting biosensor were characterized by cyclic voltammetry (CV) and chronoamperometry methods. Thanks to the fast electron transfer at the Pt/Fe3O4/rGO electrode interface, the developed biosensor exhibits a fast and linear amperometric response upon H2O2. The linear range of Pt/Fe3O4/rGO is 0.1∼2.4 mM (R2=0.998), with a sensitivity of 6.875 μA/mM and a detection limit of 1.58 μM (S/N=3). In addition, the prepared biosensor also provides good anti‐interferent ability and long‐term stability due to the favorable biocompatibility of the electrode interface. The proposed sensor will become a reliable and effective tool for monitoring and sensing the H2O2 in complicate environment.  相似文献   

5.
The number of studies conducted about nonenzymatic electrochemical sensors has increased in recent years due to the development of more stable and robust electrodes using noble metals. One of the key aspects for achieving high sensing performance including detection limit and sensitivity is the design of electrode architecture. Herein, we report a new electrochemical sensing platform featuring ultrathin standing gold nanowires (AuNWs) for nonenzymatic detection of hydrogen peroxide (H2O2). The use of AuNWs resulted in an increased electron transfer efficiency due to the higher active surface area compared to traditional gold film electrodes. This sensor demonstrates good selectivity, reproducibility, a linear range up to 49.5 mM of H2O2 with a sensitivity of 0.185±0.003 mAmM?1cm?2 and a limit of detection of 111 μM. The biological relevance of this sensor was tested in cell culture media to illustrate the performance of the proposed sensing electrode in complex biological media.  相似文献   

6.
Song Qu  Jilie Kong  Gang Chen 《Talanta》2007,71(3):1096-1102
An electrochemical sensing platform was developed based on the magnetic loading of carbon nanotube (CNT)/nano-Fe3O4 composite on electrodes. To demonstrate the concept, nano-Fe3O4 was deposited by the chemical coprecipitation of Fe2+ and Fe3+ in the presence of CNTs in an alkaline solution. The resulting magnetic nanocomposite brings new capabilities for electrochemical devices by combining the advantages of CNT and nano-Fe3O4 and provides an alternative way for loading CNT on electrodes. The fabrication and the performances of the magnetic nanocomposite modified electrodes have been described. Cyclic voltammetry (CV) and constant potential measurement indicated that the incorporated CNT exhibited higher electrocatalytic activity toward the redox processes of hydrogen peroxide. In addition, chitosan (CTS) has also been introduced into the bulk of the CNT/nano-Fe3O4 composite by coprecipitation to immobilize glucose oxidase (GOx) for sensing glucose. The marked electrocatalytic activity toward hydrogen peroxide permits effective low-potential amperometric biosensing of glucose, in connection with the incorporation of GOx into CNT/Fe3O4/CTS composite. The accelerated electron transfer is coupled with surface renewability. TEM images and XRDs offer insights into the nature of the magnetic composites. The concept of the magnetic loading of CNT nanocomposites indicates great promise for creating CNT-based biosensing devices and expands the scope of CNT-based electrochemical devices.  相似文献   

7.
We report herein a simple device for rapid biosensing consisting of a single microfluidic channel made from poly(dimethylsiloxane) (PDMS) coupled to an injector, and incorporating a biocatalytic sensing electrode, reference and counter electrodes. The sensing electrode was a gold wire coated with 5 nm glutathione-decorated gold nanoparticles (AuNPs). Sensitive detection of H2O2 based on direct bioelectrocatalysis by horseradish peroxidase (HRP) was used for evaluation. HRP was covalently linked the glutathione–AuNPs. This electrode presented quasi-reversible cyclic voltammetry peaks at ?0.01 V vs. Ag/AgCl at pH 6.5 for the HRP heme FeIII/FeII couple. Direct electrochemical activity of HRP was used to detect H2O2 at high sensitivity with a detection limit of 5 nM in an unmediated system.  相似文献   

8.
Granular nanowires with a diameter of about 60 nm were fabricated from cuprous oxide (Cu2O) by an electrochemical method using anodic aluminium oxide as the template. A non-enzymatic sensor for hydrogen peroxide (H2O2) was then developed on the basis of a gold electrode modified with Cu2O nanowires and Nafion. The resulting sensor enables the determination of H2O2 with a sensitivity of 745 μA?mM?1?cm?2, over a wide linear range (0.25 μM to 5.0 mM), and with a low detection limit (0.12 μM). The results demonstrate that the use of such granular nanowires provides a promising tool for the design of non-enzymatic chemical sensors.
Figure
A non-enzymatic sensor for hydrogen peroxide (H2O2) was developed on the basis of a gold electrode modified with Cu2O nanowires and Nafion. The resulting sensor enables the determination of H2O2 with a sensitivity of 745 μA mM?1 cm?2, over a wide linear range (0.25 μM to 5.0 mM), and with a low detection limit (0.12 μM). The results demonstrate that the use of such granular nanowires provides a promising tool for the design of non-enzymatic chemical sensors  相似文献   

9.
In this study, magnetite nanorods stabilized on polyaniline/reduced graphene oxide (Fe3O4@PANI/rGO) was synthesized via a wet‐reflux strategy. The possible formation of Fe3O4@PANI/rGO was morphologically and structurally verified by field emission scanning electron microscopy (FE‐SEM), Fourier transform infrared (FT‐IR) spectroscopy, Raman spectroscopy, X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). Furthermore, the thermal stability of Fe3O4@PANI/rGO was measured by a thermogravimetric analyzer (TGA); the composite had good thermal stability owing to the ceramic nature of Fe3O4. The Fe3O4@PANI/rGO has been applied as a potential sensing platform for electrochemical detection of hydrogen peroxide (H2O2). By the combined efforts of extended active surface area, active carbon support, more catalytic active sites and high electrical conductivity, the Fe3O4@PANI/rGO exhibited an improved performance toward the non‐enzymatic detection of H2O2 in 0.5 M KOH with a fast response time (5 s), high sensitivity (223.7 μA mM?1 cm?2), low limit of detection (4.45 μM) and wide linear range (100 μM–1.5 mM). Furthermore, the fabricated sensor exhibited excellent recovery rates (94.2–104.0 %) during real sample analysis.  相似文献   

10.
A sensor for hydrogen peroxide is described that is based on an indium tin oxide electrode modified with Fe3O4 magnetic nanoparticles which act as a mimic for the enzyme peroxidase and greatly improve the analytical performance of the sensor. The amperometric current is linearly related to the concentration of H2O2 in the range from 0.2 mM to 2 mM, the regression equation is y?=?-0.5–1.82x, the correlation coefficient is 0.998 (n?=?3), and the detection limit is 0.01 mM (S/N?=?3). The sensor exhibits favorable selectivity and excellent stability.
Figure
Using the peroxidase mimic property of Fe3O4 magnetic nanoparticles (MNPs), a sensitive electrochemical method with favorable analytical performance for the determination of hydrogen peroxide (H2O2) was developed.  相似文献   

11.
Exploration of new property/function of nanomaterials is always a strong impetus in the nanoscience field. Here, a new method of electrochemical conversion (ECC) of magnetic nanoparticles (MNPs) is proposed to endow MNPs with signal generation ability for sensing. Briefly, high potential was applied to split H2O to generate acid, while Fe3O4 MNPs reacted with H+ and produce ferric/ferrous ions, which further reacted with K4Fe(CN)6 to yield Prussian blue (PB) through potential cycling. The ECC method worked well on both home‐made and commercial MNPs with different sizes. The generated PB possessed strong electrochemical activity for further applications. Interestingly, an uneven deposition of PB on working electrode and undesired contamination of the reference and counter electrodes were found when using commercial integrated three‐electrode chip. A 3D‐printed electrochemical cell was designed to facilitate the ECC and avoid drawbacks of commercial integrated electrode. The 3D‐printed electrochemical cell was proven to solve the problem above through spatial separation of electrodes and thus facilitated the ECC process. An electrochemical sensor for H2O2 detection based on the catalysis ability of ECC‐based PB exhibited a linear response from 5 μM to 1 mM, a high sensitivity of 269 μA mM?1 cm?2 and a low detection limit of 0.16 μM (S/N=3), which suggests its promising application prospect in electrochemistry‐related analysis.  相似文献   

12.
To achieve highly sensitive nonenzymatic detection of H2O2, a novel electrochemical sensor based on Fe3O4-Ag nanocomposites was developed. Nanocomposites were synthesized by reducing [Ag(NH3)2]+ at the gas/liquid interface in the presence of silver seeds and confirmed by transmission electron microscopy and X-ray diffractometry. Electrochemical investigations indicate that the sensor is able to detect H2O2 within a wide linear range of 0.5 μM to 4.0 mM, sensitivity of 135.4 μA mM?1 cm?2 and low detection limit of 0.2 μM (S/N = 3). Additionally, the sensor exhibits good anti-interference ability, stability and repeatability. These results show that the Fe3O4-Ag nanocomposite is a promising electrocatalytic material for sensors construction.  相似文献   

13.
The present study describes a novel and very sensitive electrochemical assay for determination of hydrogen peroxide (H2O2) based on synergistic effects of reduced graphene oxide‐ magnetic iron oxide nanocomposite (rGO‐Fe3O4) and celestine blue (CB) for electrochemical reduction of H2O2. rGO‐Fe3O4 nanocomposite was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X‐ray diffraction (XRD), electrochemical impedance spectroscopy and cyclic voltammetry. Chitosan (Chit) was used for immobilization of amino‐terminated single‐stranded DNA (ss‐DNA) molecules via a glutaraldehyde (GA) to the surface of rGO‐Fe3O4. The MTT (3‐(4,5‐Dim ethylt hiazol‐2‐yl)‐2,5‐diphenylt etrazolium bromide) results confirmed the biocompatibility of nanocomposite. Experimental parameters affecting the ss‐DNA molecules immobilization were optimized. Finally, by accumulation of the CB on the surface of the rGO‐Fe3O4‐Chit/ssDNA, very sensitive amperometric H2O2 sensor was fabricated. The electrocatalytic activity of the rGO‐Fe3O4‐Chit/DNA‐CB electrode toward H2O2 reduction was found to be very efficient, yielding very low detection limit (DL) of 42 nM and a sensitivity of 8.51 μA/μM. Result shows that complex matrices of the human serum samples did not interfere with the fabricated sensor. The developed sensor provided significant advantages in terms of low detection limit, high stability and good reproducibility for detection of H2O2 in comparison with recently reported electrochemical H2O2 sensors.  相似文献   

14.
A newly developed electrochemical sensor for determination of hydrogen peroxide (H2O2) in beverages using a water‐insoluble picket‐fence porphyrin (FeTpivPP) functionalized multiwalled carbon nanotubes (MWNTs) is demonstrated. Introduction of FeTpivPP on MWNTs led to enhanced electron transfer. As a new platform in electrochemical analysis, the resultant sensor showed excellent electrocatalytic activity toward the reduction of H2O2 due to the synergic effect between MWNTs and FeTpivPP, thus leading to highly sensitive amperometric sensing of H2O2 with a detection limit of 0.05 µmol L?1. The developed method is successfully used to detect H2O2 in beverages and shows great promise for routine sensing applications.  相似文献   

15.
Three-dimensional (3D) graphene-based nanomaterials have shown wide applications in electrochemical fields such as biosensors. In this study, we displayed a simple fabrication of 3D structural reduced graphene oxide (3D structural RGO) decorated with molybdenum disulfide quantum dots (MoS2QDs) through a three-step reaction process. With its abundant raw materials, this strategy is economic and non-toxic. Various characterization techniques were utilized to characterize the morphologies of the synthesized MoS2QDs, graphene oxide (GO), and 3D structural RGO-MoS2QDs composites. Simultaneously, X-ray photoelectron spectroscopy was applied to characterize the structure and properties of composites. In order to understand the effects of the reaction period on the structure of 3D structural RGO-MoS2QDs, a series of samples with various reaction periods were prepared for morphological characterization. Finally, the fabricated 3D structural RGO-MoS2QDs composites were used to modify a glassy carbon electrode as an electrochemical non-enzymatic hydrogen peroxide (H2O2) sensor. The obtained results indicate that the fabricated electrochemical H2O2 sensor exhibits a wide detection range (0.01–5.57 mM), low detection limit (1.90 μM), good anti-interference performance, and long-time stability (18 days).  相似文献   

16.
Using porous cuprous oxide (Cu2O) microcubes, a simple non-enzymatic amperometric sensor for the detection of H2O2 and glucose has been fabricated. Cyclic voltammetry (CV) revealed that porous Cu2O microcubes exhibited a direct electrocatalytic activity for the reduction of H2O2 in phosphate buffer solution and the oxidation of glucose in an alkaline medium. The non-enzymatic amperometric sensor used in the detection of H2O2 with detection limit of 1.5 × 10?6 M over wide linear detection ranges up to 1.5 mM and with a high sensitivity of 50.6 μA/mM. This non-enzymatic voltammetric sensor was further utilized in detection of glucose with a detection limit of 8.0 × 10?7 M, a linear detection range up to 500 μM and with a sensitivity of ?70.8 μA/mM.  相似文献   

17.
《中国化学快报》2023,34(1):107299
Boron/nitrogen-co-doped carbon (BCN) nanosheets decorated with Fe2O3 nanocrystals (Fe2O3–BCN) were cast on a glassy carbon electrode (GCE) and applied as an electrochemical sensor to effectively detect paraquat (PQ), a toxic herbicide, in aqueous environments. A linear experiment performed using square wave voltammetry (SWV) under optimized experimental conditions produced a decent linear relationship and a low detection limit (LOD) of 2.74 nmol/L (S/N = 3). Repeatability, reproducibility, stability, and interference experiments confirmed that the Fe2O3–BCN/GCE system exhibited decent electrochemical sensing performance for PQ molecules. Notably, the designed sensor showed high selectivity and a decent linear relationship with PQ concentration in natural water samples. To the best of our knowledge, this is the first study on the preparation of Fe2O3–BCN nanosheets for PQ detection. The proposed sensor can be employed as an effective alternative tool for distinguishing and processing PQ.  相似文献   

18.
《化学:亚洲杂志》2018,13(16):2054-2059
The rational design and development of efficient and affordable enzyme‐free electrocatalysts for electrochemical detection are of great significance for the large‐scale applications of sensor materials, and have aroused increasing research interest. Herein, we report that a typical polyoxometalate (POM)‐based metal–organic framework (NENU5) that was hybridized with ketjenblack (KB) was a highly efficient electrochemical catalyst that could be used for the highly sensitive nonenzymatic detection of H2O2. The composite catalyst exhibited superb electrochemical detection performance towards H2O2, including a broad linear range from 10–50 mm , a low detection limit of 1.03 μm , and a high sensitivity of 33.77 μA mm −1, as well as excellent selectivity and stability. These excellent electrocatalytic properties should be attributed to the unique redox activity of the POM, the high specific surface area of the metal–organic framework (MOF), the strong conductivity of KB, and the synergistic effects of the multiple components in the composites during the electrolysis of H2O2. This work provides a new pathway for the exploration of nonenzymatic electrochemical sensors.  相似文献   

19.
The authors report on the preparation of a hollow-structured cobalt ferrite (CoFe2O4) nanocomposite for use in a non-enzymatic sensor for hydrogen peroxide (H2O2). Silica (SiO2) nanoparticles were exploited as template for the deposition of Fe3O4/CoFe2O4 nanosheets, which was followed by the removal of SiO2 template under mild conditions. This leads to the formation of hollow-structured Fe3O4/CoFe2O4 interconnected nanosheets with cubic spinel structure of high crystallinity. The material was placed on a glassy carbon electrode where it acts as a viable sensor for non-enzymatic determination of H2O2. Operated at a potential of ?0.45 V vs. Ag/AgCl in 0.1 M NaOH solution, the modified GCE has a sensitivity of 17 nA μM?1 cm?2, a linear response in the range of 10 to 1200 μM H2O2 concentration range, and a 2.5 μM detection limit. The sensor is reproducible and stable and was applied to the analysis of spiked urine samples, where it provided excellent recoveries.
Graphical abstract Schematic of a cobalt ferrite (CoFe2O4) hollow structure for use in electrochemical determination of H2O2. The sensor shows a low detection limit, a wide linear range, and excellent selectivity for H2O2.
  相似文献   

20.
Recent progress in flexible and lightweight electrochemical sensor systems requires the development of paper-like electrode materials. Here, we report a facile and green synthesis of a new type of MnO2 nanowires–graphene nanohybrid paper by one-step electrochemical method. This strategy demonstrates a collection of unique features including the effective electrochemical reduction of graphene oxide (GO) paper and the high loading of MnO2 nanowires on electrochemical reduced GO (ERGO) paper. When used as flexible electrode for nonenzymatic detection of hydrogen peroxide (H2O2), MnO2–ERGO paper exhibits high electrocatalytic activity toward the redox of H2O2 as well as excellent stability, selectivity and reproducibility. The amperometric responses are linearly proportional to H2O2 concentration in the range 0.1–45.4 mM, with a detection limit of 10 μM (S/N = 3) and detection sensitivity of 59.0 μA cm−2 mM−1. These outstanding sensing performances enable the practical application of MnO2–ERGO paper electrode for the real-time tracking H2O2 secretion by live cells macrophages. Therefore, the proposed graphene-based nanohybrid paper electrode with intrinsic flexibility, tailorable shapes and adjustable properties can contribute to the full realization of high-performance flexible electrode material used in point-of-care testing devices and portable instruments for in-vivo clinical diagnostics and on-site environmental monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号