首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sensitive and accurate high-performance liquid chromatographic methods have been developed for the simultaneous determination of thiocolchicoside (TC)-glafenine (GF) (Mix I) and thiocolchicoside-floctafenine (FN) (Mix II) in their pharmaceutical formulations. The analysis for both mixtures was performed using 250 mm × 4.6 mm i.d., 5 μm particle size C18 Waters Symmetry column. The mobile phase consisted of methanol-0.035 M phosphate buffer (50:50, v/v) of pH 4.5 for Mix I and methanol-0.03 M phosphate buffer (70:30, v/v) of pH 4 for Mix II with flow rate of 1 mL/min and UV detection at 400 nm in both cases. The calibration plots were rectilinear over the concentration range of 0.2-2 μg/mL for TC in both mixtures and 20-200 μg/mL for each of GF and FN . The limits of detection for TC and GF were 0.05 μg/mL and 0.62 μg/mL, respectively, and for TC and FN were 0.02 μg/mL and 0.70 μg/mL, respectively. Additionally, the proposed methods were successfully applied to their combined tablets with average percentage recoveries of 100.35 ± 0.61 and 100.57 ± 0.72% for TC and GF respectively and for TC and FN the percentage recoveries were 101.2 ± 0.72 and 100.36 ± 0.67%, respectively. The results obtained were favorably compared with those given using the comparison methods.  相似文献   

2.
We report the simultaneous determination of purine molecules with biological significance on pencil graphite electrode (PGE) modified with a composite solution including NiO nanoparticles, multi-walled carbon nanotube (MWCNT), and natural nano-Na-montmorillonite clay (NNaM) using DPV technique. The novel sensor, NiO/MWCNT/NNaM/PGE, achieved simultaneous determination of xanthine, theophylline, and theobromine at the detection limits 0.077 μM, 0.361 μM, and 0.458 μM with the linear working ranges 0.5–150 μM, 5–200 μM, and 5–250 μM in Britton-Robinson buffer at pH 2.0, respectively. The sensor revealed excellent performance for the simultaneous determination of XT, TP, and TB in three real-world samples.  相似文献   

3.
Tolperisone and etodolac were proven to have synergistic effect for patients of acute low back pain associated with musculoskeletal spasm. In this work, a specific, highly sensitive and reproducible analytical method was developed and validated for the simultaneous determination of tolperisone and etodolac in human plasma using liquid chromatography-tandem mass spectrometric technique. Liquid–liquid extraction was optimized for sample preparation. Zorbax C8 column (3.5 μm, 50 × 4.6 mm) was used, carrying a mobile phase mixture of 10.0 mM ammonium formate:acetonitrile (40:60, v/v) pH 3.8, running in an isocratic mode. Chlorzoxazone acted as an internal standard. Sample volume of injection was 5.0 μL, and analysis was achieved within 2.5 min. Detection and quantitation were performed by electrospray ionization mass spectrometry using the multiple-reaction monitoring mode. The proposed method could determine the analytes in the range of concentration 0.5–200.0 ng mL−1 for tolperisone and 0.05–20.0 μg mL−1 for etodolac. Findings of inter- and intraday precisions were ≤12.3% with accuracy of ±5.0%. Pharmacokinetics study for the two drugs after oral administration of healthy human volunteers was achieved with the aid of application of the developed study.  相似文献   

4.
Yılmaz S  Uslu B  Ozkan SA 《Talanta》2001,54(2):351-360
A voltammetric study of the oxidation of etodolac has been carried out at the glassy carbon electrode. The electrochemical oxidation of etodolac was investigated by cyclic, linear sweep, differential pulse and square wave voltammetry using glassy carbon electrode. Different parameters were tested to optimize the conditions for the determination of etodolac. The dependence of intensities of currents and potentials on pH, concentration, scan rate, nature of the buffer was investigated. For analytical purposes, a very well resolved diffusion controlled voltammetric peak was obtained in Britton-Robinson buffer at pH 2.15 for differential pulse and square wave voltammetric techniques. The linear response was obtained in the ranges of 2.10(-6)-8.10(-5) M with a detection limit of 6.8x10(-7) and 6x10(-6)-8x10(-5) M with a detection limit of 1.1x10(-6) M for differential pulse and square wave voltammetric techniques, respectively. Based on this study, simple, rapid, selective and sensitive two voltammetric methods were developed for the determination of the etodolac in tablet dosage form and human serum.  相似文献   

5.
In this study, simultaneous determination of toxic hydrazine and nitrite was performed on composite electrodes of poly(Nile blue)(NB), carbon nanotube(CNT) and gold nanoparticles(AuNPs). The prepared AuNPs/CNT/poly(NB)/GCE was used for as a sensor platform for individual and simultaneous determination of hydrazine and nitrite. Electrodes were characterized by HRTEM, SEM, XPS, EIS. The LOD for nitrite and hydrazine was 5.0 μM and 3.1 μM at AuNP/CNT/poly(NB)/GCE, respectively. Also, sensitive amperometric determinations of hydrazine and nitrite were performed and LOD were calculated as 0.33 μM and 0.68 μM, respectively. The method was applied to sausage and river water samples and recovery results were obtained in the range 85–115 %.  相似文献   

6.
An efficient sensor was developed for the simultaneous determination of gallic and folic acid in juice samples using an electrochemically pretreated carbon paste electrode. The electrode was characterized by CV and EIS. The electrochemical behavior of GA and FA was evaluated by CV and SWV. The electrode exhibited high electrocatalytic activity towards GA and FA due to high surface area. Under the optimized condition, linear plots in the ranges of 0.08–13 μM and 0.1 to 15 μM were obtained for GA and FA, respectively. The proposed method was successful for the simultaneous determination of GA and FA in juice samples with satisfactory recovery.  相似文献   

7.
A new voltammetric method for simultaneous determination of caffeine and pyridoxine present in different types of commercial energy drinks has been developed. This electroanalytical method is based on anodic oxidation of these biologically active nitrogen‐containing heterocycles at glassy carbon electrode covered with thin layer of sulfonated fluoropolymer Nafion® using differential pulse voltammetry in 0.1 M Britton‐Robinson buffer of pH 4.5 at potential step 5 mV, potential amplitude 70 mV, and scan rate 50 mV/s. Linear ranges for caffeine and pyridoxine determination were 63.1–600 μM and 7.5–200 μM with the detection limits of 18.9 and 2.2 μM, respectively. It was validated using high‐performance liquid chromatography with spectrophotometric detection. Obtained results have shown that voltammetric approach is very simple and low‐cost analytical method which can be used for routine determination of caffeine and pyridoxine in energy drinks.  相似文献   

8.
《Electroanalysis》2017,29(7):1828-1837
Xanthine and its methyl derivatives, theophylline and caffeine are purines which find important roles in biological systems. The simultaneous voltammetric behaviour of these purines has been studied on a glassy carbon electrode modified with an electropolymerised film of para amino benzene sulfonic acid. Well defined and well separated peaks were obtained for the oxidation of xanthine, theophylline and caffeine on the polymer modified electrode in the square wave mode. The experimental requirements to obtain the best results for individual as well as simultaneous determination were optimised. The signal for the electro‐oxidation was found to be free of interferences from each other in the range 0.9 – 100 μM in the case of xanthine and from 10–100 μM in the case of theophylline and caffeine with detection limits 0.35 μM, 7.02 μM and 11.95 μM respectively. The simultaneous determination of uric acid, the final metabolic product of xanthine oxidation in biological systems could also be accomplished along with xanthine, theophylline and caffeine atphysiological pH. The mechanistic aspects of the electro‐oxidation on the polymer modified electrode was also studied using linear sweep voltammetry. Chronoamperometry was employed to determine the diffusion coefficient of these xanthines. The developed sensor has been successfully demonstrated to be suitable for the determination of these compounds in real samples without much pre‐treatment.  相似文献   

9.
In a completely rational and designed approach, simultaneous determination of cyanazine and propazine in environmental and food samples was performed using a molecularly imprinted polymer modified carbon paste electrode (MIP-CPE) and partial least squares. The MIP-CPE designed is based on the theoretical studies functioned as a selective recognition element and pre-concentrator agent for cyanazine and propazine. Fractional factorial and central composite designs were performed to recognize, and subsequently optimize, the variables affecting the cathodic stripping voltammetric currents for the analytes. The important variables were identified to be accumulation potential with optimum values of -0.45 and -0.44 V and pH with optimum values of 2.40 and 2.34 for cyanazine and propazine, respectively. Exploration of the overall optimum conditions for simultaneous determination of cyanazine and propazine resulted in accumulation potential of -0.44 V and pH of 2.4. Dynamic linear ranges of 0.05-9.00 μmol L(-1) and 0.01-1.00 μmol L(-1) and detection limits of 0.010 and 0.001 μmol L(-1) were obtained for cyanazine and propazine, respectively. The results of the application of the proposed method on the simultaneous determination of cyanazine and propazine in foodstuffs and environmental samples were satisfactory.  相似文献   

10.
A three-dimensionally ordered macroporous (3DOM) polycysteine (PCE) film was electropolymerized on the glassy carbon electrode (GCE) using polystyrene spheres as template. The electrochemical behaviors of hydroquinone (HQ) and catechol (CC) were studied, and two independent oxidation peaks were observed. Compared with the bare GCE and GCE modified with PCE without using template, this electrode displays larger peak currents which may be attributed to the structure of PCE and the large surface area of the nanopore array structure. As a result, a novel electrochemical method was developed for the simultaneous determination of HQ and CC. Under the optimized conditions, the peak currents were linear to concentrations in the wider ranges of 9 to 700 μM for HQ and from 3 to 700 μM for CC. The method was successfully applied to the simultaneous determination of HQ and CC in spiked water samples, and the results are satisfactory.  相似文献   

11.
A novel carbon paste electrode modified with nanosized mesoporous MCM-41 was prepared, and used as an electrochemical sensor to study the electro oxidation of levodopa (LD), carbidopa (CD) and their mixtures. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of LD and CD has been explored at the modified electrode. The electrochemical sensor displayed a good resolving function for the overlapping voltammetric responses of LD and CD into two separate peaks with a potential difference of 370 mV. DPV peak currents of LD increased linearly with concentration over the 0.13 μM to 1250.00 μM range and exhibited a detection limit of 0.072 μM. Also, the proposed electrochemical sensor was used for the determination of LD and CD in some real samples, using the standard addition method.  相似文献   

12.
《Electroanalysis》2018,30(2):238-249
A copper nano particles and cerium (IV) oxide modified carbon nanotube based composite on glassy carbon electrode (Cu−CeO2/MWCNT/GCE) was fabricated for simultaneous determination of guanine and adenine. The surface morphology, chemistry and conductance of the prepared electrodes were characterized by scanning electron microscopy (SEM), energy dispersion X‐ray (EDX), X‐Ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The Cu−CeO2/MWCNT/GCE improved electrochemical behaviour of guanine and adenine compared to other electrodes. The modified electrode was also used for individual and simultaneous determination of guanine and adenine. Under optimized conditions, the calibration curves were obtained linearly in the range of 0.20 to 6.00 μM for the guanine and 0.10 to 8.0 μM for the adenine by differential pulse voltammetry. The limits of detection of guanine and adenine were calculated as 0.128 and 0.062 μM, respectively. Interferences studies were also performed in the presence of inorganic and organic compounds. Moreover, the determination of guanine and adenine contents were carried out in a calf thymus DNA sample by the developed method with satisfactory results.  相似文献   

13.
In this study, a novel and highly sensitive electrochemical method for simultaneous determination of catechol (CC) and hydroquinone (HQ) was developed, which worked at GCE modified with Nano cobalt (Nano-Co) by electrodeposition and L-Cysteine by electrochemical polymerization. The Nano-Co/L-Cysteine GCE was investigated by cyclic voltammetry (CV), SEM and EIS. The excellent conditions have been selected including supporting electrolyte, pH, accumulation time and scan rate. The calibration curves of were obtained that the linear regression equation was I=0.0734c+6×10−6 in the range of 5.8 μM to 103 μM (R2=0.9942) for CC and the linear regression equation was I=0.0566c+5×10−6 in the range of 5.8 μM to 100 μM (R2=0.9967) for HQ. The obtained detection limits of CC and HQ both were 6×10−7 M. The modified electrode was successfully applied to the simultaneous determination of CC and HQ in water samples.  相似文献   

14.
A new chemically modified electrode is constructed based on multiwalled carbon nanotube/chitosan modified glassy carbon electrode (MWCNTs‐CHT/GCE) for simultaneous determination of acetaminophen (ACT) and mefenamic acid (MEF) in aqueous buffered media. The measurements were carried out by application of differential pulse voltammetry (DPV), cyclic voltammetry (CV) and chronoamperometry (CA) methods. Application of DPV method showed that the linear relationship between oxidation peak current and concentration of ACT and MEF were 1 μM to 145 μM, and 4 μM to 200 μM, respectively. The analytical performance of this sensor has been evaluated for detection of ACT and MEF in human serum, human urine and a pharmaceutical preparation with satisfactory results.  相似文献   

15.
Yu J  Ge L  Huang J  Wang S  Ge S 《Lab on a chip》2011,11(7):1286-1291
In this study, a novel microfluidic paper-based chemiluminescence analytical device (μPCAD) with a simultaneous, rapid, sensitive and quantitative response for glucose and uric acid was designed. This novel lab-on-paper biosensor is based on oxidase enzyme reactions (glucose oxidase and urate oxidase, respectively) and the chemiluminescence reaction between a rhodanine derivative and generated hydrogen peroxide in an acid medium. The possible chemiluminescence assay principle of this μPCAD is explained. We found that the simultaneous determination of glucose and uric acid could be achieved by differing the distances that the glucose and uric acid samples traveled. This lab-on-paper biosensor could provide reproducible results upon storage at 4 °C for at least 10 weeks. The application test of our μPCAD was then successfully performed with the simultaneous determination of glucose and uric acid in artificial urine. This study shows the successful integration of the μPCAD and the chemiluminescence method will be an easy-to-use, inexpensive, and portable alternative for point-of-care monitoring.  相似文献   

16.
A stable dihydroxybenzene sensor was fabricated by electrochemical deposition of Zn/Al layered double hydroxide film on glassy carbon electrode (LDHf/GCE). The sensitive and facile electrochemical method for the simultaneous determination of catechol (CA) and hydroquinone (HQ) under coexistence of resorcinol (RE) has been achieved at the LDHf/GCE in phosphate buffer solution (pH 6.5). Under the optimized conditions, the differential pulse voltammetry response of the modified electrode to CA (or HQ) shows a linear concentration range of 0.6 μM to 6.0 mM (or 3.2 μM to 2.4 mM) with a correlation coefficient of 0.9987 (or 0.9992) and the calculated limit of detection is 0.1 μM (or 1.0 μM) at a signal‐to‐noise ratio of 3. In the presence of 50 μM isomer, the linear concentration ranges for CA and HQ are 3.0 μM to 1.5 mM and 12.0 μM to 0.8 mM, respectively. The detection limits are 1.2 μM and 9.0 μM. Further, the proposed method has been performed to successfully detect dihydroxybenzene isomers in analysis of real samples, such as water and tea.  相似文献   

17.
《Analytical letters》2012,45(15-16):1633-1651
Abstract

A method is described for the simultaneous determination of nickel and cobalt in manganese sulphate electrolyte by the dimethylglyoxime (DMGH2) sensitized differential pulse polarography. The high manganese sulphate background (1.2M) in the concentrated process plant electrolyte interferes only with the nickel determination and precludes its direct determination. A 50% v/v dilution and an excessive amount (2 × 10?3M) of the chelating agent are required at pH7.7 for the reliable determination of both elements. Under these conditions, the linear concentration ranges are 0-110 μg/1 for nickel and 0-140 μg/1 for cobalt. The minimum detectable amounts above the levels present in the process plant electrolyte are 2 μg/1 and 1 μg/1 for both elements, respectively. The relative standard deviations for all measurements are between 1 and 3%.  相似文献   

18.
A simple, specific, precise and accurate reverse phase liquid chromatographic (RP-LC) method has been developed for the simultaneous determination of etodolac and acetaminophen in tablet dosage form. The chromatographic separation was achieved on a BDS Hypersil C18, 100 mm × 4.6 mm, 5 μm column at a detector wavelength of 274 nm using an isocratic mobile phase consisting of a mixture of 0.05% aqueous orthophosphoric acid and acetonitrile in the ratio of 50:50 (v/v) at a flow rate of 1.0 mL min?1. The retention times for etodolac and acetaminophen were found to be 1.32 and 4.24 min, respectively. The method was validated for the parameters like specificity, linearity, precision, accuracy and robustness. The method was found to be specific and stability indicating as no interfering peaks of impurities, degradent and excipients were observed. The square of correlation coefficients (R 2) for etodolac and acetaminophen were 0.9996 and 0.9998 while percentage recoveries were 101.32 and 100.94%, respectively. Intra- and inter-day relative standard deviations for both the components were <2.0%. The proposed RP-LC method can be applied for the routine analysis of commercially available formulations of these drugs either as such or in combination.  相似文献   

19.
《Electrophoresis》2018,39(7):1014-1020
A simple and rapid capillary electrophoresis method with capacitively coupled contactless conductivity detection (CE‐C4D) for the simultaneous determination of inorganic and organic anions in liquid product obtained from the hydrothermal treatment of biomass residues is presented. Under the optimal analytical conditions, limits of detection ranged from 1.8 to 9.4 μM for most target solutes and 53 μM for citrate. Relative standard deviations were below 0.5% for migration times and within 0.6–6.5% for peak areas for all solutes. The proposed method was successfully applied for the rapid determination and screening of inorganic and organic anions in liquid product produced following differing hydrothermal treatment temperatures for banana and pineapple biomass, and the contribution of organic acid formation to acidity in the liquid was evaluated. CE‐C4D could be a suitable method for the optimization or tailoring of HTT conditions for desired liquid product composition, and additionally for determination of the best variety(s) of biomass to use in such processes.  相似文献   

20.
采用铜镉柱还原硝酸盐,与CdTe量子点增敏过氧亚硝酸-碳酸钠体系的化学发光信号相结合,开发了快速在线同时分析亚硝酸盐和硝酸盐的新方法.对流动注射、化学发光等实验参数条件进行优化,在Na2CO3的浓度为0.2 M、H2O2的浓度为0.03 M、Na2EDTA的浓度为1×10-3 M、CdTe量子点粒径为2.84 nm的条件下,过氧亚硝酸-碳酸钠体系可以获得最优的化学发光信号.该方法检测亚硝酸盐的线性范围为0.3~75μM,检测限可达0.12μM,其相对标准偏差为1.9%;硝酸盐的线性范围为1.0~100μM,检测限可达0.26μM,其相对标准偏差为1.5%.此方法无需衍生和分离,可以实现同时、准确、快速和高选择性地检测人体尿液中亚硝酸盐和硝酸盐的含量,回收率分别为94%~105%和96.6%~110.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号