首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The second-harmonic generation of an intense self-guided right circularly polarized laser beam in a magnetized plasma is investigated. The laser imparts oscillatory velocity to electrons and exerts a radial ponderomotive force on them to create a depleted density channel. The critical power for self-focusing shows huge reduction as electron cyclotron frequency approaches the laser frequency (/spl omega//sub c/ /spl rarr/ /spl omega/). In the presence of the self-created radial density gradient, the laser drives a density perturbation at the fundamental frequency. The density perturbation beats with the oscillatory velocity to produce a second harmonic current density, driving second harmonic radiation copropagating with the laser. The second harmonic, however, is azimuthally asymmetric with /spl theta/-variation as exp(i/spl theta/). Its amplitude shows resonant enhancement as /spl omega//sub c/ /spl rarr/ /spl omega/.  相似文献   

2.
This paper presents a scheme for second harmonic generation (SHG) of an intense Cosh‐Gaussian (ChG) laser beam in thermal quantum plasmas. Moment theory approach in W.K.B approximation has been adopted in deriving the differential equation governing the propagation characteristics of the laser beam with distance of propagation. The effect of relativistic increase in electron mass on propagation dynamics of laser beam has been incorporated. Due to relativistic nonlinearity in the dielectric properties of the plasma, the laser beam gets self‐focused and produces density gradients in the transverse direction. The generated density gradients excite electron plasma wave (EPW) at pump frequency that interacts with the incident laser beam to produce its second harmonics. Numerical simulations have been carried out to investigate the effects of laser parameters on selffocusing of the laser beam and hence on the conversion efficiency of its second harmonics. Simulation results predict that within a specific range of decentered parameter the ChG laser beams show smaller divergence as they propagate and, thus, lead to enhanced conversion efficiency of second harmonics. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
This paper presents an investigation of self‐focusing of a Cosh‐Gaussian (ChG) laser beam and its effect on second harmonic generation in collisionless plasma. In the presence of ChG laser beam the carriers get redistributed from high field region to low field region on account of ponderomotive force as a result of which a transverse density gradient is produced in the plasma which in turn generates an electron‐plasma wave at pump frequency. Generated plasma wave interacts with the incident laser beam and hence generates its second harmonics. Moment theory has been used to derive differential equation governing the evolution of spot size of ChG laser beam propagating through collisionless plasma. The differential equation so obtained has been solved numerically. The effect of decentered parameter, intensity of ChG laser beam and density of plasma on self‐focusing of the laser beam and second harmonic yield has been investigated. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Second harmonic generation (SHG) using intense Hermite-Gaussian laser beam (HGLB) propagating through the plasma for mode-indices m = 0 and m = 1 is reported in the present work. Ponderomotive force induced density perturbation beats with the oscillatory velocity of electrons at incident laser frequency, generate the second harmonic nonlinear current that give rise to SHG. Using paraxial approximations, we have derived the coupled equations for the beam width parameter of HGLB and second harmonic's normalized amplitude. Resonance condition is obtained by considering wiggler magnetic field which providing an extra momentum to the second harmonic photon and this result a significant increase in the amplitude of SHG. Our analysis shows the prominent rise in normalized amplitude of second harmonic on increasing the value of the intensity of fundamental laser pulse, normalized wiggler magnetic field and normalized density of plasma. It is notified that the gain of SHG is more prominent for m = 1. Dependency of laser and plasma parameters on SHG is also reported in the current work.  相似文献   

5.
Resonant third harmonic generation of a sub-millimeter wave in n-InSb waveguide embedded with a density ripple is investigated. The non-linearity arises through the modulation of free electron mass while the ripple accounts for the phase mismatch. The efficiency of the third harmonic generation is large. However, as the plasma frequency increases the attenuation rate of the third harmonic increases and the third harmonic efficiency decreases as (ωpb/c) is raised.  相似文献   

6.
Summary This paper presents an investigation of the growth of a radially symmetrical ripple, superimposed on a Gaussian laser beam in a collisionless magnetoplasma. The effect of the magnetic field and the intensity of the laser on the growth of the ripple is presented in some detail. The effect of the presence of the ripple on the excitation of an electron plasma wave is also investigated. Coupling of a weak plasma wave with the main laser beam is through the modified background density. The combined effect of increased intensity of the laser beam and magnetic field is observed to suppress the growth of the ripple as well as the excitation of the plasma wave. The authors of this paper have agreed to not receive the proofs for correction.  相似文献   

7.
A two-color interferometer for preformed plasma characterization is developed. We observe the electron density distribution of preformed plasmas on a 5 μm-thick copper target irradiated with a high-intensity Ti:sapphire laser. The two-color interferometer extended the observable electron density region using a fundamental (800 nm) probe beam to cover the lower density region and a second harmonic (400 nm) probe beam to cover the higher density region, simultaneously. This characterization of the electron density distribution of preformed plasmas with femtosecond time resolution significantly contributes to the understanding of high-intensity laser–thin-foil interactions during high-energy electron, ion, and X-ray generation. PACS 52.38.-r; 52.50.Jm; 52.70.-m  相似文献   

8.
We examine the effect of wiggler magnetic field on pulse slippage of short pulse laser-induced third harmonic generation in plasma. The process of third harmonic generation of an intense short pulse laser in plasma is resonantly enhanced by the application of a magnetic wiggler. The laser exerts a ponderomotive force at second harmonic driving density oscillations. The second harmonic oscillations coupled with electron velocity at the laser frequency, produces a non-linear current, driving the third harmonic. Third harmonic pulse generates in the fundamental pulse domain. However, the group velocity of the third harmonic wave is greater than the fundamental wave. Hence, the third harmonic pulse saturates strongly and moves forward from the fundamental pulse at shorter distance than the second harmonic pulse.  相似文献   

9.
Self-focusing of cosh Gaussian laser beam in plasma with periodic density ripple has been investigated. The pondermotive force on electron and the relativistic oscillation of the electron mass causes periodic self-focusing/defocusing of the cosh Gaussian laser beam. The beam converges in the region of high plasma density due to dominance of self-focusing effect over diffraction effect and diverges in the low density region. Non-linear partial differential equation governing the evolution of complex envelope in slowly varying approximation is solved using paraxial ray approximation. The variation of beam-width parameter is studied with distance of propagation for different values of ripple wave number d and decentred parameter b. In order to get strong self-focusing, wavelength and intensity parameters of cosh Gaussian laser beam are optimized.  相似文献   

10.
等离子体密度标长对高次谐波转换效率的影响   总被引:1,自引:1,他引:0  
帅斌  李儒新  徐至展 《光学学报》2001,21(11):404-1406
通过等离子体粒子模拟研究了在强激光与等离子体相互作用产生高次谐波的过程中,等离子体密度标长对转换效率的影响,计算了在不同密度标长下p偏振非相对论强度激光与高密度等离子体相互作用产生高次谐波的转换效率,发现等离子体密度标长对转换效率有重要的影响,这种影响与谐波级次,等离子体密度,激光脉冲宽度有关。  相似文献   

11.
A reliable target-triggering plasma shutter was applied to second harmonic generation (SHG) of AgGaSe2 crystal with a TEA CO2 laser. Under normal air pressure, argon charged plasma shutter was triggered by focusing beam companying with a pair of adjustable metal targets. Conversion efficiency was enhanced by 3.3 times and the maximal efficiency 9.3%, with 1.4-mJ second harmonic energy was obtained. Finally, crystal damage was discussed together with previous work.  相似文献   

12.
In this paper, the influence of ponderomotive and relativistic nonlinearities on the filamentation of an ultraintense laser pulse is investigated in three dimensions within the paraxial ray approximations. Generation of electron plasma wave (EPW) structure at pump-wave frequency and the second harmonic generation in these filamentary structures are reported. The generation of the plasma wave is due to intensity gradient (in the transverse direction of the laser beam in filamentary structure) and density gradient (due to ponderomotive-force effect). For typical laser–plasma parameters: The $hbox{laser intensity} = 2.5timesbreak 10^{20} hbox{W/cm}^{2}$; the $hbox{particles density} = 1.9 times 10^{19} hbox{cm}^{-3}$; and it is found that the maximum intensity of EPW is in the range of $2.0 times 10^{13} hbox{W}/hbox{cm}^{2}$. Interaction of the plasma wave with the incident laser beam leads to second harmonic generation, and the yield comes out to be $approx! 2.1 times 10^{-7}$.   相似文献   

13.
An experiment is described in which an electromagnetic wave (extraordinary mode) is propagated across a magnetized plasma and second harmonic generation is detected. The generation of the plasma and the second harmonic wave is associated with resonant conditions of electron cyclotron resonance and upper hybrid resonance. By adjusting the intensity of axial magnetic field, the second harmonic generation can be made solely due to the electron cyclotron resonance, the upper hybrid resonance or both. The experiment is qualitatively in agreement with previous similar experiments and can be explained in terms of the spatial variations of the magnetic field intensity and the electron number density. A technique for diagnosing peak number density is developed from the observed second harmonic power characteristics.  相似文献   

14.
We present the correction of the phase distortion which occurs during the second harmonic generation by non-linear crystals, such as KDP and KTP at high average power laser. This is due to the optical quality and thicknesses of the crystals which in turn influence the quality of the incident laser beam. This phase distortion is corrected by reflecting back the laser beam into the crystal using a phase conjugate mirror. It is found that the conversion efficiency of second harmonic generation without phase conjugation is more than that with phase conjugation. Far field pattern shows that the distortion of the laser beam can be corrected by using the phase conjugate mirror. Fidelity of the beam profile increases significantly with phase conjugation in the case of KDP crystal.  相似文献   

15.
This work reveals an exploration of self-focusing of Hermite-cosine-Gaussian laser beam in a collisionless plasma under relativistic nonlinearity. Self-focusing along with self-trapping of Hermite-cosine-Gaussian laser beam are analyzed for different values of laser intensity, plasma density, and decentered parameters. Mathematical analysis displays that these parameters play a major role in achieving the stronger and earlier self-focusing. Further, a comparative study between self-focusing of Hermite-cosine-Gaussian laser beam with and without exponential density ramp profile is introduced. Plasma density transition with exponential profile is found to be more effective in order to have stronger self-focusing. The present analysis may lead to very useful applications in the field of efficient harmonic generation, laser driven fusion etc.  相似文献   

16.
The terahertz (THz) frequency radiation production as a result of nonlinear interaction of high intense laser beam with low density ripple in a magnetized plasma has been studied. If the appropriate phase matching conditions are satisfied and the frequency of the ripple is appropriate then this difference frequency can be brought in the THz range. Self focusing (filamentation) of a circularly polarized beam propagating along the direction of static magnetic field in plasma is first investigated within extended‐paraxial ray approximation. The beam gets focused when the initial power of the laser beam is greater than its critical power. Resulting localized beam couples with the pre‐existing density ripple to produce a nonlinear current driving the THz radiation. By changing the strength of the magnetic field, one can enhance or suppress the THz emission. The expressions for the laser beam width parameter, the electric field vector of the THz wave have been obtained. For typical laser beam and plasma parameters with the incident laser intensity ≈ 1014 W/cm2, laser beam radius (r0) = 50 μm, laser frequency (ω0) = 1.8848 × 1014rad/s, electron plasma (low density rippled) wave frequency (ω0) = 1.2848 × 1014 rad/s, plasma density (n0) = 5.025 × 1017cm–3, normalized ripple density amplitude (μ)=0.1, the produced THz emission can be at the level of Giga watt (GW) in power (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
利用椭圆高斯光束产生266nm紫外连续激光   总被引:1,自引:0,他引:1       下载免费PDF全文
陈国柱  沈咏  刘曲  邹宏新 《物理学报》2014,63(5):54204-054204
本文采用商用532 nm激光器作为基频光源,利用偏硼酸钡(β-BBO)晶体进行外腔倍频,实现了266 nm连续激光的高效输出.文中详细模拟了BBO晶体中的束腰形状对倍频效率的影响,仿真和实验结果均表明椭圆高斯光束可以有效改善走离效应,提高倍频转换效率.通过优化蝶形倍频腔,可以使椭圆高斯光束在腔内共振,当1 W基频光输入时可输出约180 mW的266 nm紫外连续激光,倍频转换效率达到18%.  相似文献   

18.
We present a new mechanism for high-order harmonic generation by reflection of a laser beam from an overdense plasma, efficient even at moderate laser intensities (down to Igamma2 approximately 4x10(15) W cm-2 microm2). In this mechanism, a transient phase matching between the electromagnetic field and plasma oscillations within a density gradient leads to the emission of harmonics up to the plasma frequency. These plasma oscillations are periodically excited in the wake of attosecond electron bunches which sweep across the density gradient. This process leads to a train of unevenly spaced chirped attosecond pulses and, hence, to broadened and chirped harmonics. This last effect is confirmed experimentally.  相似文献   

19.
Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.  相似文献   

20.
The experimental conditions that facilitate the excitation of parametric decay instabilities upon the electron cyclotron resonance heating of a plasma at the second harmonic extraordinary wave in tokamaks and stellarators and, as a result, make anomalous absorption of microwave power possible have been analyzed. It has been shown that, in the case of a nonmonotonic radial profile of the plasma density, when the beam of electron cyclotron waves passes near the equatorial plane of a toroidal device, the parametric excitation of electron Bernstein waves, as well as the generation of ion Bernstein waves propagating from the parametric decay region to the nearest ion cyclotron harmonic, where they efficiently interact with ions, is possible. The proposed theoretical model can explain the anomalous generation of accelerated ions observed upon electron cyclotron heating in small and moderate toroidal facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号