首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reviews the use of dielectrophoresis for high-fidelity separations and characterizations of subpopulations to highlight the recent advances in the electrokinetic field as well as provide insight into its progress toward commercialization. The role of cell subpopulations in heterogeneous clinical samples has been studied to deduce their role in disease progression and therapy resistance for instances such as cancer, tissue regeneration, and bacterial infection. Dielectrophoresis (DEP), a label-free electrokinetic technique, has been used to characterize and separate target subpopulations from mixed samples to determine disease severity, cell stemness, and drug efficacy. Despite its high sensitivity to characterize similar or related cells based on their differing bioelectric signatures, DEP has been slowly adopted both commercially and clinically. This review addresses the use of dielectrophoresis for the identification of target cell subtypes in stem cells, cancer cells, blood cells, and bacterial cells dependent on cell state and therapy exposure and addresses commercialization efforts in light of its sensitivity and future perspectives of the technology, both commercially and academically.  相似文献   

2.
Monocyte heterogeneity and its prevalence are revealed as indicator of several human diseases ranking from cardiovascular diseases to rheumatoid arthritis, chronic kidney diseases, autoimmune multiple sclerosis, and stroke injuries. When monocytes and macrophages are characterized and isolated with preserved genetic, phenotypic and functional properties, they can be used as label‐free biomarkers for precise diagnostics and treatment of various diseases. Here, the dielectrophoretic responses of the monocytes and macrophages were examined. We present 3D carbon‐electrode dielectrophoresis (carbon‐DEP) as a separation tool for U937 monocytes and U937 monocyte‐differentiated macrophages. The carbon‐electrodes advanced the usability and throughput of DEP separation, presented wider electrochemical stability. Using the 3D carbon‐DEP chip, we first identified the selective positive and negative DEP responses and specific crossover frequencies of monocytes and macrophages as their signatures for separation. The crossover frequency of monocytes and macrophages was 17 and 30 kHz, respectively. Next, we separated monocyte and macrophage subpopulations using their specific dielectrophoretic responses. Afterward, we used a fluorescence‐activated cell sorter to confirm our results. Finally, we enriched 70% of monocyte cells from the mixed cell population, in other words, concentration of monocyte cells to macrophage cells was five times increased, using the 30‐kHz, 10‐Vpp electric field and 1 μL/min flow rate.  相似文献   

3.
Circulating tumor cells (CTCs) have been proven to have significant prognostic, diagnostic, and clinical values in early-stage cancer detection and treatment. The efficient separation of CTCs from peripheral blood can ensure intact and viable CTCs and can, thus, give proper genetic characterization and drug innovation. In this study, continuous and high-throughput separation of MDA-231 CTCs from overlapping sized white blood cells (WBCs) is achieved by modifying inertial cell focusing with dielectrophoresis (DEP) in a single-stage microfluidic platform by numeric simulation. The DEP is enabled by embedding interdigitated electrodes with alternating field control on a serpentine microchannel to avoid creating two-stage separation. Rather than using the electrokinetic migration of cells which slows down the throughput, the system leverages the inertial microfluidic flow to achieve high-speed continuous separation. The cell migration and cell positioning characteristics are quantified through coupled physics analyses to evaluate the effects of the applied voltages and Reynolds numbers (Re) on the separation performance. The results indicate that the introduction of DEP successfully migrates WBCs away from CTCs and that separation of MDA-231 CTCs from similar sized WBCs at a high Re of 100 can be achieved with a low voltage of magnitude 4 ×106 V/m. Additionally, the viability of MDA-231 CTCs is expected to be sustained after separation due to the short-term DEP exposure. The developed technique could be exploited to design active microchips for high-throughput separation of mixed cell beads despite their significant size overlap, using DEP-modified inertial focusing controlled simply by adjusting the applied external field.  相似文献   

4.
Dielectrophoresis (DEP) is a non-destructive, accurate, and label-free cell manipulating technique and DEP applications have been found in various fields. Assessment of cell viability is one of the important applications and many investigations have been reported. In this paper, cell polarization and its modeling, some key parameters employed for living/dead cell separation, as well as electrode configurations are reviewed. Focus is given to the latest development of DEP devices employed for the assessment of cell viability. Experimentally determined factors for separating living/dead cells, such as the conductivity of suspending medium and the frequency of applied electric field, are summarized. The future directions and potential challenges in this field are also outlined.  相似文献   

5.
The trapping or immobilization of individual cells at specific locations in microfluidic platforms is essential for single cell studies, especially those requiring cell stimulation and downstream analysis of cellular content. Selectivity for individual cell types is required when mixtures of cells are analyzed in heterogeneous and complex matrices, such as the selection of metastatic cells within blood samples. Here, we demonstrate a microfluidic device based on direct current (DC) insulator-based dielectrophoresis (iDEP) for selective trapping of single MCF-7 breast cancer cells from mixtures with both mammalian peripheral blood mononuclear cells (PBMC) as well MDA-MB-231 as a second breast cancer cell type. The microfluidic device has a teardrop iDEP design optimized for the selective capture of single cells based on their differential DEP behavior under DC conditions. Numerical simulations adapted to experimental device geometries and buffer conditions predicted the trapping condition in which the dielectrophoretic force overcomes electrokinetic forces for MCF-7 cells, whereas PBMCs were not trapped. Experimentally, selective trapping of viable MCF-7 cells in mixtures with PBMCs was demonstrated in good agreement with simulations. A similar approach was also executed to demonstrate the selective trapping of MCF-7 cells in a mixture with MDA-MB-231 cells, indicating the selectivity of the device for weakly invasive and highly invasive breast cancer cells. The DEP studies were complemented with cell viability tests indicating acceptable cell viability over the course of an iDEP trapping experiment.
Figure
?  相似文献   

6.
Microfluidic cell enrichment by dielectrophoresis, based on biophysical and electrophysiology phenotypes, requires that cells be resuspended from their physiological media into a lower conductivity buffer for enhancing force fields and enabling the dielectric contrast needed for separation. To ensure that sensitive cells are not subject to centrifugation for resuspension and spend minimal time outside of their culture media, we present an on-chip microfluidic strategy for swapping cells into media tailored for dielectrophoresis. This strategy transfers cells from physiological media into a 100-fold lower conductivity media by using tangential flows of low media conductivity at 200-fold higher flow rate versus sample flow to promote ion diffusion over the length of a straight channel architecture that maintains laminarity of the flow-focused sample and minimizes cell dispersion across streamlines. Serpentine channels are used downstream from the flow-focusing region to modulate hydrodynamic resistance of the central sample outlet versus flanking outlets that remove excess buffer, so that cell streamlines are collected in the exchanged buffer with minimal dilution in cell numbers and at flow rates that support dielectrophoresis. We envision integration of this on-chip sample preparation platform prior to or post-dielectrophoresis, in-line with on-chip monitoring of the outlet sample for metrics of media conductivity, cell velocity, cell viability, cell position, and collected cell numbers, so that the cell flow rate and streamlines can be tailored for enabling dielectrophoretic separations from heterogeneous samples.  相似文献   

7.
Cancer stem cells (CSCs) are aggressive subpopulations with increased stem‐like properties. CSCs are usually resistant to most standard therapies and are responsible for tumor repropagation. Similar to normal stem cells, isolation of CSCs is challenging due to the lack of reliable markers. Antigen‐based sorting of CSCs usually requires staining with multiple markers, making the experiments complicated, expensive, and sometimes unreliable. Here, we study the feasibility of using dielectrophoresis (DEP) for isolation of glioblastoma cells with increased stemness. We culture a glioblastoma cell line in the form of neurospheres as an in vitro model for glioblastoma stem cells. We demonstrate that spheroid forming cells have higher expression of stem cell marker, nestin. Next, we show that dielectric properties of neurospheres change as a result of changing culture conditions. Our results indicate that spheroid forming cells need higher voltages to experience the same DEP force magnitude compared to normal monolayer cultures of glioblastoma cell line. This study confirms the possibility of using DEP to isolate glioblastoma stem cells.  相似文献   

8.
Illdircct llltraviolct (UV) dclectioll is bccolllillg allractive ill capillary clectroplloresis(CE) of alllillo acids dllC ic tile avoidallcc of tillle-collslllllillg derivalizatioll, and ease tobe dcvclopcd as a llllivcrsnl dclcctioll 1ilo4c'-'. Hoal'cvcr, tllcre are still problems illpractical applicatiolls. Tile 1host scriolls ollc is tile irrcprodllcible separation of tellresllltcd. We 11nvc 11cllce started a pro.icct try'illg ic reveal tile reasolls throllgll asystclllatic optillliz:lli…  相似文献   

9.
The detection of circulating tumor cells (CTCs) in blood is crucial to assess metastatic progression and to guide therapy. Dielectrophoresis (DEP) is a powerful cell surface marker-free method that allows intrinsic dielectric properties of suspended cells to be exploited for CTC enrichment/isolation from blood. Design of a successful DEP-based CTC enrichment/isolation system requires that the DEP response of the targeted particles should accurately be known. This paper presents a DEP spectrum method to investigate the DEP spectra of cells without directly analyzing their membrane and cytoplasmic properties in contrast to the methods in literature, which employ theoretical assumptions and complex modeling. Integrating electric field simulations based on DEP theory with the experimental data enables determination of the DEP spectra of leukocyte subpopulations, polymorphonuclear and mononuclear leukocytes, and MCF7 breast cancer cells as a model of CTC due to their metastatic origin over the frequency range 100 kHz–50 MHz at 10 Vpp. In agreement with earlier findings, differential DEP responses were detected for mononuclear and polymorphonuclear leukocytes due to the richness of the cell surface features and morphologies of the different leukocyte types. The data reveal that the strength of the DEP force exerted on MCF7 cells was particularly high between 850 kHz and 20 MHz. These results illustrate that the proposed technique has the potential to provide a generic platform to identify DEP responses of different biological particles.  相似文献   

10.
Many biomedical analysis applications require trapping and manipulating single cells and cell clusters within microfluidic devices. Dielectrophoresis (DEP) is a label-free technique that can achieve flexible cell trapping, without physical barriers, using electric field gradients created in the device by an electrode microarray. Little is known about how fluid flow forces created by the electrodes, such as thermally driven convection and electroosmosis, affect DEP-based cell capture under high conductance media conditions that simulate physiologically relevant fluids such as blood or plasma. Here, we compare theoretical trajectories of particles under the influence of negative DEP (nDEP) with observed trajectories of real particles in a high conductance buffer. We used 10-µm diameter polystyrene beads as model cells and tracked their trajectories in the DEP microfluidic chip. The theoretical nDEP trajectories were in close agreement with the observed particle behavior. This agreement indicates that the movement of the particles was highly dominated by the DEP force and that contributions from thermal- and electroosmotic-driven flows were negligible under these experimental conditions. The analysis protocol developed here offers a strategy that can be applied to future studies with different applied voltages, frequencies, conductivities, and polarization properties of the targeted particles and surrounding medium. These findings motivate further DEP device development to manipulate particle trajectories for trapping applications.  相似文献   

11.
Dielectrophoresis (DEP) and flow cytometry are powerful technologies and widely applied in microfluidic systems for handling and measuring cells and particles. Here, we present a novel microchip with a DEP selective filter integrated with two microchip flow cytometers (FCs) for on-line monitoring of cell sorting processes. On the microchip, the DEP filter is integrated in a microfluidic channel network to sort yeast cells by positive DEP. The two FCs detection windows are set upstream and downstream of the DEP filter. When a cell passes through the detection windows, the light scattered by the cell is measured by integrated polymer optical elements (waveguide, lens, and fiber coupler). By comparing the cell counting rates measured by the two FCs, the collection efficiency of the DEP filter can be determined. The chips were used for quantitative determination of the effect of flow rate, applied voltage, conductivity of the sample, and frequency of the electric field on the sorting efficiency. A theoretical model for the capture efficiency was developed and a reasonable agreement with the experimental results observed. Viable and non-viable yeast cells showed different frequency dependencies and were sorted with high efficiency. At 2 MHz, more than 90% of the viable and less than 10% of the non-viable cells were captured on the DEP filter. The presented approach provides quantitative real-time data for sorting a large number of cells and will allow optimization of the conditions for, e.g., collecting cancer cells on a DEP filter while normal cells pass through the system. Furthermore, the microstructure is simple to fabricate and can easily be integrated with other microstructures for lab-on-a-chip applications.  相似文献   

12.
This paper presents the development and experimental verification of a DEP fluidic system capable of fractionation of intact biological cells in suspension into purer subpopulations. This was accomplished by employing a specially shaped nonuniform electric field, synthesized by microfabricated planar microelectrode arrays, housed on an insulating glass substrate. To improve the efficiency of cell sorting, the microelectrodes are individually biased by a variable frequency alternating current (ac) voltage source, which allows us to exploit both positive and negative dielectrophoresis (DEP) to affect cell separation. Furthermore, through suitable establishment of a cell stream supported by sheath flow, such fractionation is achieved in a continuous fashion. The proposed DEP fluidic fractionation may be configured to operate in three (3) different modes. In this work, however, a detailed account is only presented for one mode of operation. The simulation of the electric field and force profiles, together with the experimental results obtained on model cells (plant protoplasts), confirm our theoretical predictions and furthermore demonstrate improvements in both separation efficiency and throughput over a wide range of frequencies (10 Hz to 5 kHz).  相似文献   

13.
The spatial and temporal control of biological species is essential in complex microfluidic biosystems. In addition, if the biological species is a cell, microfluidic handling must ensure that the cell's metabolic viability is maintained. The use of DEP for cell manipulation in microfluidics has many advantages because it is remote and fast, and the voltages required for cell trapping scale well with miniaturization. In this paper, the conditions for bacterial cell (Escherichia coli) trapping using a quadrupole electrode configuration in a PDMS microfluidic channel were developed both for stagnant and for in‐flow fluidic situations. The effect of the electrical conductivity of the fluid, the applied electric field and frequency, and the fluid‐flow velocity were studied. A dynamic exchange between captured and free‐flowing cells during DEP trapping was demonstrated. The metabolic activity of trapped cells was confirmed by using E. coli cells genetically engineered to express green fluorescent protein under the control of an inducible promoter. Noninduced cells trapped by negative DEP and positive DEP were able to express green fluorescent protein minutes after the inducer was inserted in the microchannel system immediately after DEP trapping. Longer times of trapping prior to exposure to the inducer indicated first a degradation of the cell metabolic activity and finally cell death.  相似文献   

14.
Dielectrophoresis (DEP) for cell manipulation has focused, for the most part, on approaches for separation/enrichment of cells of interest. Advancements in cell positioning and immobilization onto substrates for cell culture, either as single cells or as cell aggregates, has benefited from the intensified research efforts in DEP (electrokinetic) manipulation. However, there has yet to be a DEP approach that provides the conditions for cell manipulation while promoting cell function processes such as cell differentiation. Here we present the first demonstration of a system that combines DEP with a hybrid cell adhesive material (hCAM) to allow for cell entrapment and cell function, as demonstrated by cell differentiation into neuronlike cells (NLCs). The hCAM, comprised of polyelectrolytes and fibronectin, was engineered to function as an instantaneous cell adhesive surface after DEP manipulation and to support long-term cell function (cell proliferation, induction, and differentiation). Pluripotent P19 mouse embryonal carcinoma cells flowing within a microchannel were attracted to the DEP electrode surface and remained adhered onto the hCAM coating under a fluid flow field after the DEP forces were removed. Cells remained viable after DEP manipulation for up to 8 d, during which time the P19 cells were induced to differentiate into NLCs. This approach could have further applications in areas such as cell-cell communication, three-dimensional cell aggregates to create cell microenvironments, and cell cocultures.  相似文献   

15.
Effective methods for rapid sorting of cells according to their viability are critical in T cells based therapies to prevent any risk to patients. In this context, we present a novel microfluidic device that continuously separates viable and non-viable T-cells according to their dielectric properties. A dielectrophoresis (DEP) force is generated by an array of castellated microelectrodes embedded into a microfluidic channel with a single inlet and two outlets; cells subjected to positive DEP forces are drawn toward the electrodes array and leave from the top outlet, those subjected to negative DEP forces are repelled away from the electrodes and leave from the bottom outlet. Computational fluid dynamics is used to predict the device separation efficacy, according to the applied alternative current (AC) frequency, at which the cells move from/to a negative/positive DEP region and the ionic strength of the suspension medium. The model is used to support the design of the operational conditions, confirming a separation efficiency, in terms of purity, of 96% under an applied AC frequency of 1.5 × 10Hz and a flow rate of 20 μl/h. This work represents the first example of effective continuous sorting of viable and non-viable human T-cells in a single-inlet microfluidic chip, paving the way for lab-on-a-chip applications at the point of need.  相似文献   

16.
This paper reports the new combination of cell sorting and counting capabilities on a single device. Most state-of-the-art devices combining these technologies use optical techniques requiring complicate experimental setups and labeled samples. The use of a label-free, electrical device significantly decreases the system complexity and makes it more appropriate for use in point-of-care diagnostics.Living and dead yeast cells are separated by dielectrophoretic forces and counted using coulter counters. The combination of these two methods allows the determination of the percentage of living and dead cells for viability studies of cell samples. It could further be used for sorting and counting of blood cells in applications such as diagnosis of insufficient cell concentrations, identification of cell deficiencies or bacterial contamination. The use of dielectrophoresis (DEP) as sorting principle allows to separate cells based on their dielectric properties in place of size-based separation, enabling sorting of large panels of cells and separation of infected and non-infected cells of the same type.  相似文献   

17.
Numerous microfluidic separation applications have been shown in the past years providing a fast analysis of biological samples like DNA or proteins. Microfluidic separation based on dielectrophoresis (DEP), that is the migration of a polarizable object in an inhomogeneous electric field, provides numerous advantages. However, the main drawback of DEP separation devices is that they are not sufficient for large-scale sample purification due to the lack of high sample throughput. In this work, we present for the first time a microfluidic device with two parallelized dielectrophoretic separations of (biological) samples smaller than 1 µm. The separation is carried out by means of insulator-based DEP, that is an insulating ridge reduced the flow through height and thus created a nanoslit at which the selective DEP forces occur. The device consists of a cross injector, two parallel operation regions and separate harvesting reservoirs where the samples are collected. Each DEP operation region contains an insulating ridge. We successfully demonstrate the separation of 100 and 40 nm beads and 10 and 5 kbp DNA with a separation purity of more than 80%. This states the proof-of-concept for up-scaling of dielectrophoretic separation by parallelization. As the present technique is virtually label-free, it offers a fast purification, for example in the production of gene vaccines.  相似文献   

18.
The ability to transport and store a large human blood inventory for transfusions is an essential requirement for medical institutions. Thus, there is an important need for rapid and low-cost characterization tools for analyzing the properties of human red blood cells (RBCs) while in storage. In this study, we investigate the ability to use dielectrophoresis (DEP) for measuring the storage-induced changes in RBC electrical properties. Fresh human blood was collected, suspended in K2-EDTA anticoagulant, and stored in a blood bank refrigerator for a period of 20 days. Cells were removed from storage at 5-day intervals and subjected to a glutaraldehyde crosslinking reaction to “freeze” cells at their ionic equilibrium at that point in time and prevent ion leakage during DEP analysis. The DEP behavior of RBCs was analyzed in a high permittivity DEP buffer using a three-dimensional DEP chip (3DEP) and also compared to measurements taken with a 2D quadrupole electrode array. The DEP analysis confirms that RBC electrical property changes occur during storage and are only discernable with the use of the cell crosslinking reaction above a glutaraldehyde fixation concentration of 1.0 w/v%. In particular, cytoplasm conductivity was observed to decrease by more than 75% while the RBC membrane conductance was observed to increase by more than 1000% over a period of 20 days. These results show that the presented combination of chemical crosslinking and DEP can be used as rapid characterization tool for monitoring electrical properties changes of human RBCs while subjected to refrigeration in blood bank storage.  相似文献   

19.
The separation and detection of circulating tumor cells (CTCs) have a significant impact on clinical diagnosis and treatment by providing a predictive diagnosis of primary tumors and tumor metastasis. But the responsive release and downstream analysis of live CTCs will provide more valuable information about molecular markers and functional properties. To this end, specific capture and controllable release methods, which can achieve the highly efficient enrichment of CTCs with strong viability, are urgently needed. DNA networks create a flexible, semi-wet three-dimensional (3D) microenvironment for cell culture, and have the potential to minimize the loss of cell viability and molecular integrity. More importantly, responsive DNA networks can be reasonably designed as smart sensors and devices to change shape, color, disassemble, and giving back to external stimuli. Here, a strategy for specifically collecting cells using a dual-aptamer DNA network is designed. The proposed strategy enables effective capture, 3D encapsulation, and responsive release of CTCs with strong viability, which can be used for downstream analysis of live cells. The programmability of CRISPR/Cas12a, a powerful toolbox for genome editing, is used to activate the responsive release of captured CTCs from the DNA network. After activation by a specified double-strand DNA (dsDNA) input, CRISPR/Cas12a cleaves the single-stranded DNA regions in the network, resulting in molecular to macroscopic changes in the network. Accompanied by the deconstruction of the DNA network into fragments, controllable cell release is achieved. The viability of released CTCs is well maintained and downstream cell analysis can be performed. This strategy uses the enzymatic properties of CRISPR/Cas12a to design a platform to improve the programmability and versatility of the DNA network, providing a powerful and effective method for capturing and releasing CTCs from complex physiological samples.

The separation and detection of circulating tumor cells (CTCs) have a significant impact on clinical diagnosis and treatment by providing a predictive diagnosis of primary tumors and tumor metastasis.  相似文献   

20.
Gagnon ZR 《Electrophoresis》2011,32(18):2466-2487
Over the past decade, dielectrophoresis (DEP) has evolved into a powerful, robust and flexible method for cellular characterization, manipulation, separation and cell patterning. It is a field with widely varying disciplines, as it is quite common to see DEP integrated with a host of applications including microfluidics, impedance spectroscopy, tissue engineering, real-time PCR, immunoassays, stem-cell characterization, gene transfection and electroporation, just to name a few. The field is finally at the point where analytical and numerical polarization models can be used to adequately describe and characterize the dielectrophoretic behavior of cells, and there is ever increasing evidence demonstrating that electric fields can safely be used to manipulate cells without harm. As such, DEP is slowly making its way into the biological sciences. Today, DEP is being used to manipulate individual cells to specific regions of space for single-cell assays. DEP is able to separate rare cells from a heterogeneous cell suspension, where isolated cells can then be characterized and dynamically studied using nothing more than electric fields. However, there is need for a critical report to integrate the many new features of DEP for cellular applications. Here, a review of the basic theory and current applications of DEP, specifically for cells, is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号