首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《Electroanalysis》2018,30(3):525-532
A novel hierarchically nanoporous carbon (NPC) derived from Al‐based porous coordination polymer is prepared by two‐step carbonization method for immobilization of the Co3O4 in the application of the nonenzymatic biofuel cells and biosensors. The structure and morphology are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), and X‐ray diffraction (XRD). Brunauer‐Emmett‐Teller (BET) is to characterize the porous nature of the NPC, and X‐ray photoelectron spectroscopy (XPS) is to characterize the composition of Co3O4@nanoporous carbon (Co3O4@NPC). Without collapse in the high carbonization temperature (above 1600 °C), the NPC maintains the nanoporous structure and high specific surface area of 1551.2 m2 g−1. In addition, the NPC is composited with Co3O4 by hydrothermal method to form the Co3O4@NPC. When tested as the nonenzymatic electrocatalyst for glucose oxidation reaction (GOR), the Co3O4@NPC exhibits higher response to glucose, in which the current shifts up by 64 %, than pure Co3O4 in 0.1 M KOH. The limit of detection is 0.005 mM (S/N=3) and response time is within 3 s. The detection range can be divided into two sections of 0.02–1.4 mM and 1.4–10.7 mM with the sensitivity of 249.1 μA mM−1 cm−2 and 66.6 μA mM−1 cm−2, respectively. A glucose fuel cell is constructed with the Co3O4@NPC as the anode and Pt/C catalyst as the cathode. The open‐circuit potential of the nonenzymatic glucose/O2 fuel cell was 0.68 V, with a maximum power density of 0.52 mW cm−2 at 0.27 V. This work may contribute to exploring other nanoporous carbons for application in glucose fuel cells and biosensors.  相似文献   

2.
《Electroanalysis》2017,29(8):1876-1886
A facile chemical solution deposition via two‐step spin coating technique was used to fabricate nano‐particulate novel Sn doped Co3O4 thin film for glucose sensor and fuel cell applications. Substitution of Sn into Co3O4 host lattice lead to a remarkable increase in the electrocatalytic activity of the Co3O4 electrode material. Film thickness played a significant role in enhancing the charge transferability of the electrode as was observed from electrochemical impedance spectroscopy (EIS). The best sensor exhibited two wide linear response ranges (2 μM up to ∼0.5 mM and 0.6 mM up to ∼5.5 mM respectively) with sensitivities of 921 and 265 μA cm−2 mM−1 respectively and low limit of detection of 100 nM (S/N=3). The sensor was very selective towards glucose in the presence of various interference and showed long term stability. Moreover, the developed thin film modified electrode could generate one electron current in nonenzymatic fuel cell setup at room temperature.  相似文献   

3.
《Electroanalysis》2017,29(3):923-928
This work presents a simple green approach for the chemical synthesis of cobalt oxide nano hexagons (Co3O4 NHs) with an average size of 160±40 nm incorporated graphene nanosheets (GR). The techniques used to confirm the formation of GR−Co3O4 NHs are transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX), and X‐ray diffraction spectroscopy (XRD). The dopamine (DA) sensor was fabricated by drop casting GR−Co3O4 NHs on the pre‐cleaned glassy carbon electrode (GCE). GR−Co3O4 modified GCE displayed a sensitive and selective electrochemical determination of DA compared to only GR and Co3O4 NHs modified GCE. Our fabricated sensor showed a wide linear range from 0.2 to 3443 μM with low limit of detection (84 nM) towards the determination of DA. The sensitivity of our fabricated sensor was calculated to be 108 μA mM−1 cm−2. As well, a significant storage stability, repeatability and reproducibility were attained by GR−Co3O4 NHs modified GCE. Human urine samples were targeted for the demonstration of practicality of our sensor.  相似文献   

4.
Biomimetic electrochemical sensors are very promising not only due to their lower expense and longer stability than conventional enzymatic ones, but they also often suffer from simultaneously achieving high sensitivity and good selectivity. Here we present a well-defined Au@Co3O4/CeO2 yolk-shell nanostructure (YSN) that is first synthesized and exploited as highly efficient electrocatalysts for hydrogen peroxide (H2O2) detection. The introduced CeO2 in Co3O4 matrix greatly facilitates the migration of lattice oxygen, which increases the concentration of surface oxygen vacancies (Oa), remarkably enhancing the adsorption ability of H2O2 and promoting the decomposition of H2O2 for faster electron transfer than pristine Au@Co3O4 core-shell nanostructure (CSN). The abundant Oa of Au@Co3O4/CeO2 YSN is confirmed by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The as-prepared biomimetic sensor delivers a wide dynamic range (5.0 nM to 5.4 μM), a low limit of detection (LOD) (2.74 nM), and a high sensitivity (35.67 μA μM−1 cm−2), paving a new way to construct an ultrasensitive and selective enzyme-free biomimetic electrochemical sensor. Furthermore, the sensor is used to real-time monitor H2O2 released from human cervical cancer cells (HeLa) and human umbilical vein endothelial cells (HUVEC), demonstrating its great potential in practical applications.  相似文献   

5.
《Electroanalysis》2017,29(12):2855-2862
In this study, we report on the selective of fructose on Co3O4 thin film electrode surface. A facile chemical solution deposition technique was used to fabricate Co3O4 thin film on fluorine doped tin oxide, FTO, glass. Electrode characterization was done using XRD, HRTEM, SEM, AFM, and EIS. The constructed sensor exhibited two distinctive linear ranges (0.021–1.74 mM; 1.74–∼15 mM) covering a wide linear range of up to ∼15 mM at an applied potential of +0.6 V vs Ag/AgCl in 0.1 M NaOH solution. The sensor demonstrated high, reproducible and repeatable (R.S.D of <5 %) sensitivity of 495 (lower concentration range) & 53 (higher concentration range) μA cm−2 mM−1. The sensor produced a low detection limit of ∼1.7 μM (S/N =3). The electrode was characterised by a fast response time of <6 s and long term stability. The repeatability and stability of the electrode resulted from the chemical stability of Co3O4 thin film. The sensor was highly selective towards fructose compared to the presence of other key interferences i. e. AA, AC, UA. The ease of the electrode fabrication coupled with good electrochemical activity makes Co3O4 thin film, a promising candidate for non‐enzymatic fructose detection.  相似文献   

6.
Copper (I) oxide nanocubes (Cu2O NCs) covered with cobalt oxide nanohexagons (Co3O4 NHs) were prepared through simple chemical method. Here, ascorbic acid is used as reducing and capping agent for the synthesis of nanocubes and nanohexagons. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy‐dispersive X‐ray spectroscopy (EDX) and X‐ray diffraction spectroscopy (XRD) were employed to confirm the prepared nanocomposite. Cu2O NCs?Co3O4 NHs nanocomposite is drop cast on the glassy carbon electrode (GCE) for the fabrication of glucose sensor. The fabricated Cu2O NCs?Co3O4 NHs/GCE exhibited a better electrocatalytic activity towards the determination of glucose than that of individually fabricated Cu2O NCs and Co3O4 NHs modified GCE. Our finding exhibited a wide linear range from 1 μM to 5330 μM with LOD of 0.63 towards glucose. In addition, the sensor attained appreciable stability, repeatability and reproducibility. Practicality of the sensor was demonstrated in human serum samples. The main advantages of the fabricated sensor are simple, biocompatible, cost effective, fast response and highly stable electrode surface.  相似文献   

7.
Co3O4/graphene oxide (GO) nanocomposites were successfully prepared by a depositing‐decomposition method. The as‐prepared samples were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Cyclic voltammetry (CV) was used to evaluate the electrochemical response of a glass carbon electrode (GCE) modified with Co3O4/GO nanocomposite towards glucose. Compared with the Co3O4/GCE, the Co3O4/GO/GCE exihibits higher electrocatalytic activity due to the synergistic effects of electrocatalytic ability of Co3O4 and large surface of GO. The Co3O4/GO/GCE was applied for glucose detection in alkaline solution. The linear current response range of glucose on Co3O4/GO/GCE covered the range from 9 × 10?5 to 6.03 × 10?3 M, with a detection limit of 5.2 × 10?7 M (S/N = 3).  相似文献   

8.
The preparation and characterisation of a new composite electrode with Co3O4 particles-modified multi-walled carbon nanotube (MWCNT) and poly(phenosafranine), as well as its novel application for the voltammetric detection of rutin was described. The resulting composite electrode was characterised using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). In the optimised experimental conditions, the oxidation peak current (Ipa) of rutin showed a linear increase in concentration, between 0.008–0.6 and 0.80–6.0 μmol L−1, with a detection limit of 0.00379 μmol L−1. Due to its good selectivity and stability, the composite electrode was successfully applied in detecting rutin in pharmaceutical formulations.  相似文献   

9.
Developing highly active and sensitive peroxidase mimics for L-cysteine (L-Cys) colorimetric detection is very important for biotechnology and medical diagnosis. Herein, polyoxometalate-doped porous Co3O4 composite (NiMo6@Co3O4) was designed and prepared for the first time. Compared with pure and commercial Co3O4, NiMo6@Co3O4(n) composites exhibit the enhanced peroxidase-mimicking activities and stabilities due to the strong synergistic effect between porous Co3O4 and multi-electron NiMo6 clusters. Moreover, the peroxidase-mimicking activities of NiMo6@Co3O4(n) composites are heavily dependent on the doping mass of NiMo6, and the optimized NiMo6@Co3O4(2) exhibits the superlative peroxidase-mimicking activity. More importantly, a sensitive L-Cys colorimetric detection is developed with the sensitivity of 0.023 μM−1 and the detection limit at least 0.018 μM in the linear range of 1–20 μM, which is by far the best enzyme-mimetic performances, to the best our knowledge.  相似文献   

10.
《Electroanalysis》2017,29(2):578-586
A simple solution based deposition process has been used to fabricate Zn doped Co3O4 electrode as an electrocatalyst for non‐enzymatic oxidation of glucose. XRD, HRTEM, SEM, EELS, AFM, EIS was used to characterise the electrode. The addition of Zn as dopant on Co3O4 resulted in enhanced electrochemical performance of Zn:Co3O4 material compared to pristine Co3O4 due to increased charge transferability. The as prepared electrode showed fast response (<7 s) time, good sensitivity (193 μA mM−1 cm−2) in the linear range of 5 μM–0.62 mM, good selectivity towards glucose at a relatively lower applied potential of +0.52 V in 0.1 M NaOH solution. A detection limit of ∼2 μM was measured for the Zn:Co3O4 electrode. The applied fabrication method resulted in good inter and intra electrode reproducibility as was shown by the lower relative standard deviation values (R.S.D). The electrode retained 70 % of initial current response after 30 days. Although the as prepared Zn:Co3O4 electrodes did not result in highest reported sensitivity, and lowest limit of detection; the ease of fabrication and scalability of production, good inter and intra electrode reproducibility makes it a potential candidate for commercial application as glucose sensor.  相似文献   

11.
To avoid an enormous energy crisis in the not-too-distant future, it be emergent to establish high-performance energy storage devices such as supercapacitors. For this purpose, a three-dimensional (3D) heterostructure of Co3O4 and Co3S4 on nickel foam (NF) that is covered by reduced graphene oxide (rGO) has been prepared by following a facile multistep method. At first, rGO nanosheets are deposited on NF under mild hydrothermal conditions to increase the surface area. Subsequently, nanowalls of cobalt oxide are electro-deposited on rGO/Ni foam by applying cyclic-voltammetry (CV) under optimized conditions. Finally, for the synthesis of Co3O4@Co3S4 nanocomposite, the nanostructure of Co3S4 was fabricated from Co3O4 nanowalls on rGO/NF by following an ordinary hydrothermal process through the sulfurization for the electrochemical application. The samples are characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The obtained sample delivers a high capacitance of 13.34 F cm−2 (5651.24 F g−1) at a current density of 6 mA cm−2 compared to the Co3O4/rGO/NF electrode with a capacitance of 3.06 F cm−2 (1230.77 F g−1) at the same current density. The proposed electrode illustrates the superior electrochemical performance such as excellent specific energy density of 85.68 W h Kg−1, specific power density of 6048.03 W kg−1 and a superior cycling performance (86% after 1000 charge/discharge cycles at a scan rate of 5 mV s−1). Finally, by using Co3O4 @Co3S4/rGO/NF and the activated carbon-based electrode as positive and negative electrodes, respectively, an asymmetric supercapacitor (ASC) device was assembled. The fabricated ASC provides an appropriate specific capacitance of 79.15 mF cm−2 at the applied current density of 1 mA cm−2, and delivered an energy density of 0.143 Wh kg−1 at the power density of 5.42 W kg−1.  相似文献   

12.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability.  相似文献   

13.
This work reports the synthesis of various carbon (Vulcan XC-72 R) supported metal oxide nanostructures, such as Mn2O3, Co3O4 and Mn2O3−Co3O4 as heterogeneous Fenton-like catalysts for the degradation of organic dye pollutants, namely Rhodamine B (RB) and Congo Red (CR) in wastewater. The activity results showed that the bimetallic Mn2O3−Co3O4/C catalyst exhibits much higher activity than the monometallic Mn2O3/C and Co3O4/C catalysts for the degradation of both RB and CR pollutants, due to the synergistic properties induced by the Mn−Co and/or Mn (Co)−support interactions. The degradation efficiency of RB and CR was considerably increased with an increase of reaction temperature from 25 to 45°C. Importantly, the bimetallic Mn2O3−Co3O4/C catalyst could maintain its catalytic activity up to five successive cycles, revealing its catalytic durability for wastewater purification. The structure–activity correlations demonstrated a probable mechanism for the degradation of organic dye pollutants in wastewater, involving •OH radical as well as Mn2+/Mn3+ or Co2+/Co3+ redox couple of the Mn2O3−Co3O4/C catalyst.  相似文献   

14.
In this work, a dual-functional electrochemical sensor has been proposed based on Sn-doped defective Bi2S3 (TDDB) microspheres, which exhibited the excellent electrochemical performance on Pb(II) and H2O2 detection. The TDDB offered a satisfied detection limit of 8.0 nM towards Pb(II) with a sensitivity of 96.7 μA ⋅ μM−1. As a H2O2 sensor, a high sensitivity of 3540 μA mM−1 cm−2 was obtained in a linear range from 0.45 mM to 10 mM with a detection limit of 10 nM. Moreover, the electrochemical detection of Pb(II) in Taihu Lake and H2O2 in human serum was achieved with high reliability and good recovery.  相似文献   

15.
Reduced graphene oxide sheets decorated with cobalt oxide nanoparticles (Co3O4/rGO) were produced using a hydrothermal method without surfactants. Both the reduction of GO and the formation of Co3O4 nanoparticles occurred simultaneously under this condition. At the same current density of 0.5 A g−1, the Co3O4/rGO nanocomposites exhibited much a higher specific capacitance (545 F g−1) than that of bare Co3O4 (100 F g−1). On the other hand, for the detection of H2O2, the peak current of Co3O4/rGO was 4 times higher than that of Co3O4. Moreover, the resulting composite displayed a low detection limit of 0.62 μM and a high sensitivity of 28,500 μA mM−1cm−2 for the H2O2 sensor. These results suggest that the Co3O4/rGO nanocomposite is a promising material for both supercapacitor and non-enzymatic H2O2 sensor applications.  相似文献   

16.
Ag/MnO2/GO nanocomposites were synthesized via the method of gas/liquid interface based on silver mirror reaction, and a non‐enzymatic H2O2 sensor was fabricated through immobilizing Ag/MnO2/GO nanocomposites on GCE. The composition and morphology of the nanocomposites were studied by energy‐dispersive X‐ray spectroscopy (EDS), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Electrochemical investigation indicated that it exhibited a favorable performance for the H2O2 detection. Its linear detection range was from 3 μM to 7 mM with a correlation coefficient of 0.9960; the sensitivity was 105.40 μA mM?1 cm?2 and the detection limit was estimated to be 0.7 μM at a signal‐to‐noise ratio of 3.  相似文献   

17.
Engineering appropriate shape and size of three‐dimensional inorganic nanostructures materials is of one the main critical problems in pursuing high‐performance electrode materials. Herein, we fabricate a metal‐organic framework derived cobalt oxide (Co3O4) are grown on copper oxide nanowire (CuO NWs) supported on the surface of 3D copper foam substrate. The highly aligned CuO NWs were prepared by using electrochemical anodization of copper foam in ambient temperature and followed by MOF Co3O4 was grown via a simple in situ solution deposition then consequent calcination process. The obtained binder‐free 3D CuO NWs@Co3O4 nanostructures were further characterized by using X‐ray diffraction, X‐ray photoelectron spectroscopy, field‐emission scanning electron microscopy, and transmission electron microscopy. Furthermore, electrochemical sensing of glucose was studied by using Cyclic Voltammetry, and chronoamperometry techniques. Interestingly, 3D CuO NWs@Co3O4 electrode exhibits excellent performance for the oxidation of glucose compared with individual entities. The proposed sensor shows wide linear ranges from 0.5 μM to 0.1 mM with the sensitivity of 6082 μA/μM and the lowest detection limit (LOD) of 0.23 μM was observed with the signal to noise ratio, (S/N) of 3. The superior catalytic oxidation of glucose mainly is endorsed by the excellent electrical conductivity and synergistic effect of the Co3O4 and CuO NWs.  相似文献   

18.
《Electroanalysis》2017,29(10):2385-2394
In this present scenario, for the first time, we propose a facile and simple wet chemical approach for the fabrication of two‐dimensional (2D) cerium tungstate (CeW2O9;CeW) nanosheets and evaluated as an electrochemical sensor for the detection of nitrite ions. The successful formation of CeW2O9 nanosheets was confirmed by various physicochemical techniques such as X‐ray diffraction, Fourier transform infrared spectroscopy, Raman, Scanning electron microscope, Transmission electron microscope and Energy dispersive X‐ray studies. The electrochemical properties of the CeW nanosheets were studied by using cyclic voltammograms (CV) and chronoamperometric techniques. As an electrochemical sensor, the CeW nanosheets modified glassy carbon electrode (GCE) showed superior electrocatalytic activity in the oxidation of nitrite in terms of higher anodic peak current and lower oxidation potential when compared with unmodified GCE. CeW nanosheets based electrochemical sensor has been fabricated which detect nitrite in wide linear response range, good sensitivity and very low detection limit of 0.02–986 μM, 2.85 μA μM−1 cm−2 and 8 nM, respectively. Moreover, the CeW nanosheets modified GCE exhibited excellent selectivity even in the presence of common metal ions and biologically co‐interfering compounds. For the practical viability of the prepared amperometric sensor has been utilized in various water samples such as tap, lake and drinking water and the obtained recoveries are appreciable.  相似文献   

19.
A new kind of nonmetallic nanosensors based on surface-enhanced Raman spectroscopy (SERS) have been successfully prepared by the assembly of α-Fe2O3 nanoparticles (NPs) onto clean quartz surface via the cross-linker of hexamethylene diisocyanate (HDI). The resultant substrates have been characterized by electron micrographs, which show that the α-Fe2O3 NPs distribute on the modified surface uniformly with a monolayer or sub-monolayer structure. 4-mercaptopyridine (4-Mpy) and 2-mercaptobenzothiazole (2-MBT) molecules have been used as SERS probes to estimate the detection efficiency of the α-Fe2O3 thin films. The SERS experiments show that it is possible to record high quality SERS spectra from probe molecules on the α-Fe2O3 thin films at sub-micromolar ( < 10−6 mol/L) concentration. These results indicate that the highly ordered, uniformly roughed, highly sensitive and low-cost α-Fe2O3 thin films are excellent candidates for nonmetallic SERS-active nanosensors.  相似文献   

20.
3D urchin-like Co3O4 have been successfully prepared by calcination of the urchin-like pre-cursors, which were synthesized through a facile hydrothermal route. The morphology and structure of the 3D urchin-like Co3O4 have been characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission elec-tron microscopy, and X-ray powder diffraction. The as-synthesized Co3O4 products are of urchin-like structures with approximated 5-7 μm in diameter, and are composed of numer-ous nanoparticles chains with the particles diameter of about 15 nm. This kind of urchin-like Co3O4 exhibits superior energy storage properties with the high capacity of 1.369 Ah/g and its good cyclic stability shows great potential in the rechargeable Li-ion battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号