首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Polyaniline (PANI) thin films have been prepared by applying the novel neutral and ionized cluster beam deposition (NCBD and ICBD) methods and the pulsed laser deposition (PLD) technique to the PANI samples of half-oxidized emeraldine base (EB-PANI) and protoemeraldine base forms in a high-vacuum condition. Characterization of the oxidation states and structural changes of pristine and doped thin films has been performed by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and x-ray photoelectron spectroscopy. Spectroscopic measurements demonstrate that the dominant structure of NCBD and ICBD thin films corresponds to the reduced leucoemeraldine base state, whereas the chemical composition of PLD thin films depends critically on the laser fluence and the molecular weight of PANI target. The congruent deposition is only obtained for the PLD films deposited by the laser-induced decomposition of the low-molecular-weight targets in the low to intermediate fluence regime (below 100 mJ/cm2 with a pulse duration of 7 ns). The surface morphology examined by atomic force microscopy measurements shows that the cluster and laser beams are effective in producing smooth, uniform polymeric thin films. After I2 and HCl doping, the electrical conductivities of the NCBD, ICBD, and particularly PLD thin films are increased significantly. The higher conductivity of PLD films is ascribed to higher amounts of quinoid di-imine doping sites in the EB-PANI state, and the overall structure-conductivity characteristics are consistent with the spectroscopic observations.  相似文献   

2.
The scaling up of established deposition techniques like pulsed laser deposition (PLD) to larger substrate diameter is a main condition for the technological application of high-Tc superconducting (HTSC) thin films. SNMS depth profiling and RBS have been used to control the homogeneity of film thickness and stoichiometry of Au/YBaCuO/CeO2 thin film systems deposited on 3-inch sapphire wafers by PLD. A systematic dependence has been found for the relative SNMS sensitivity factors (RSF) on the structural state of YBaCuO. Therefore, a calculation of the composition of the epitaxial YBaCuO thin films is not possible using RSF determined from polycrystalline YBaCuO target material. The interdiffusion of thin films and substrate has been investigated in dependence on the deposition temperature by SNMS depth profiling. The obtained homogeneity of film thickness and stoichiometry over the entire 3-inch diameter proofs the suitability of PLD for in-situ deposition of 3-inch wafers by YBaCuO thin film systems for microwave applications.  相似文献   

3.
Pulsed laser deposition (PLD) is a unique method to obtain epitaxial multi-component oxide films. Highly stoichiometric, nearly single crystal-like materials in the form of films can be made by PLD. Oxides which are synthesized at high oxygen pressure can be made into films at low oxygen partial pressure. Epitaxial thin films of highT c cuprates, metallic, ferroelectric, ferromagnetic, dielectric oxides, superconductor-metal-superconductor Josephson junctions and oxide superlattices have been made by PLD. In this article, an overview of preparation, characterization and properties of epitaxial oxide films and their applications are presented. Future prospects of the method for fabricating epitaxial films of transition metal nitrides, chalcogenides, carbides and borides are discussed.  相似文献   

4.
PLD (pulsed laser deposition) is an attractive technique to fabricate thin films with a stoichiometry reflecting that of the target material. Conventional PLD instruments are more or less black boxes in which PLD is performed virtually “blind”, i.e. without having great control on the important PLD parameters. In this preliminary study, for the first time, a 213 nm Nd-YAG commercial laser ablation-inductively coupled plasma mass spectrometer (LA-ICPMS) intended for microanalysis work was used for PLD under atmospheric pressure and in and ex situ ICPMS analysis for diagnostics of the thin film fabrication process.A PLD demonstration experiment in a He atmosphere was performed with a Sm13.8Fe82.2Ta4.0 target-Ta-coated silicon wafer substrate (contraption with defined geometry in the laser ablation chamber) to transfer the permanent magnetic properties of the target to the film. Although this paper is not dealing with the magnetic properties of the film, elemental analysis was applied as a means of depicting the PLD process. It was shown that in situ ICPMS monitoring of the ablation plume as a function of the laser fluence, beam diameter and repetition rate may be used to ensure the absence of large particles (normally having a stoichiometry somewhat different from the target). Furthermore, ex situ microanalysis of the deposited particles on the substrate, using the LA-ICPMS as an elemental mapping tool, allowed for the investigation of PLD parameters critical in the fabrication of a thin film with appropriate density, homogeneity and stoichiometry.  相似文献   

5.
Journal of Solid State Electrochemistry - The tin oxide (SnO2) thin films have been prepared by the pulsed laser deposition (PLD) at deposition temperatures (Td) ranging from 300 to...  相似文献   

6.
A detailed characterization of platinum- and gold-diamondlike carbon (DLC) nanocomposite films deposited onto silicon substrates is presented. A modified pulsed laser deposition (PLD) technique was used to incorporate noble metal nanoclusters into hydrogen-free DLC films. Several analytical techniques, including transmission electron microscopy, atomic force microscopy, Rutherford backscattering spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation testing, were used to investigate these thin films in an effort to determine their physical and electrochemical properties. Rutherford backscattering spectroscopy indicated that the gold- and platinum-DLC films contain metal concentrations between three and 36 atomic percent. Cross-sectional transmission electron microscopy revealed that metal is present as arrays of noble metal islands embedded within the DLC matrix, while atomic force microscopy provided evidence of target splashing. In addition, due to the inclusion of metal, metal-DLC thin films exhibited greater conductivity than their metal-free counterparts. The electrochemical properties were studied using quasi-reversible redox couples and correlated to the metal concentration. Finally, the influence of the layer's composition on the electron-transfer kinetics and the achievable working potential window is discussed. The results discussed herein suggest that metal-DLC thin films grown by pulsed laser deposition present a promising alternative electrode material for electrochemistry.  相似文献   

7.
Emerging applications for robust small format or distributed devices feature a need for power and rechargeable lithium‐ion batteries could play a significant role. This review focuses on a high precision technique to controllably grow thin‐film electrodes or full all‐solid‐state batteries, that is, pulsed laser deposition (PLD). The technique and solid‐state batteries are introduced followed by a detailed showcase of the depth of PLD‐based growth undertaken on cathodes, electrolytes, anodes and whole microbatteries. Emphasis is placed on the various characterization techniques available to study PLD grown components and devices, and how interfaces become both critical and arguably easier to probe in PLD grown films or devices. This work provides a perspective on the techniques, its opportunities for electrodes and devices, and how to probe the resulting growth and its evolution in batteries.  相似文献   

8.
Pulsed laser deposition (PLD) was used to grow nanocrystalline SnO2 thin films onto glass substrates. The nanocrystallites and microstructures in SnO2 thin films grown by PLD techniques have been investigated in detail by using X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). The PLD process was carried out at room temperature under a working pressure of about 2×10−6 mbar. Experimental results indicate that thin films are composed of a polycrystalline SnO2 and an amorphous SnO phase. In particular, the presence of such an amorphous SnO phase in the thin films greatly limits their practical use as gas-sensing devices. HRTEM observations revealed that SnO2 nanocrystallites with tetragonal rutile structure embed in an amorphous SnO matrix, which are approximatively equiaxed. These approximatively equiaxed SnO2 nanocrystallites contain a high density of defects, such as twin boundaries and edge dislocations. The grain growth of SnO2 thin films may be discussed in terms of the coalescent particle growth mechanism.  相似文献   

9.
随着薄膜材料的日益发展和新型薄膜材料的不断涌现,开发薄膜生长技术对于半导体和光电等科技领域的作用日益突出。本文主要介绍最近发展的聚合物辅助沉积从分子层面上控制生长高质量的薄膜材料。聚合物辅助沉积是一种生长高质量薄膜的化学水性溶液方法,将金属离子与聚合物通过络合、氢键或静电等方式形成一种均匀稳定的前驱体溶液,再经过超滤、成膜和热处理形成高质量的金属氧化物、金属碳化物、金属氮化物、金属单质、金属硫/硒化物等薄膜以及纳米粒子等化合物或复合功能材料。该方法中水溶性的聚合物能通过络合作用抑制金属离子的水解使得溶液稳定,并能精确控制薄膜的组分从而形成高质量的薄膜。该化学溶液方法的提出为科学技术领域提供了一种低成本和大面积制备薄膜的技术路线。本文最后总结和展望了聚合物辅助沉积法未来的挑战和发展方向。  相似文献   

10.
Amorphous carbon silicon nitride thin films were grown on (100) oriented silicon substrates by pulsed laser deposition (PLD) assisted by an RF nitrogen plasma source. Up to about 30 at. % nitrogen and up to 20 at. % silicon were found in the hard amorphous thin films by XPS in dependence on the composition of the mixed graphite / Si3N4 PLD target. The universal nanohardness was measured to be at maximum load force of 0.1 mN up to 23 GPa for thin CSixNy films with reference value of 14 GPa for single crystalline silicon. X-ray photoelectron spectroscopy (XPS) of CSixNy film surfaces showed a clear correlation of binding energy and intensity of fitted features of N 1s, C 1s, and Si 2p peaks to the composition of the graphite / Si3N4 target and to nitrogen flow through the plasma source, indicating soft changes of binding structure of the thin films due to variation of PLD parameters. Auger electron spectroscopy (AES) of Si KL23L23;1D Auger transition gave a detailed view of bonding structure of Si in the CSixNy films. The intensity of π* and σ* resonances at the carbon K-edge X-ray absorption near-edge structure (XANES) of the CSixNy films measured at BESSY I corresponded to the nanohardness of the CSixNy films, thus giving insight into chemical binding structure of superhard amorphous materials.  相似文献   

11.
Nickel ferrite is a soft magnetic material with inverse spinel structure. Soft ferrite films are used in microwave devices, integrated planar circuits, etc., because of their high resistivity. In this work, thin films of nickel ferrite were deposited on Si (100) substrate by using pulsed laser deposition (PLD) technique. The thickness of the film was measured by surface profilometer and also by X‐ray reflectivity (XRR). The films were annealed at three different temperatures to observe the effect on the structural and magnetic properties of the film. The films were characterised by X‐ray diffraction (XRD), Raman spectroscopy and vibrating sample magnetometer (VSM) to study the structural and magnetic properties. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Recent investigations have indicated that high-temperature superconducting thin films produced by chemical vapour deposition possess interesting properties. The present study reveals a new aspect of this trend, i.e. detection of similarities or dissimilarities of these materials with respect to their technological and superconducting properties, using some multivariate statistical approaches like cluster, principle components and multiple regression analysis. This approach adds to the conventional knowledge of fabrication parameters and superconducting properties by establishing the number and type of conditional factors responsible for these properties or technologies, correlation of variables (properties) within a certain conditional factor, similarities between film-producing teams even with the use of different technological parameters etc. Multivariate statistics make it possible to detect some quantitative links between superconducting and fabrication parameters and to suggest certain patterns of high-temperature superconducting thin films possessing common features.  相似文献   

13.
Compared witli the traditional dental implant, TixOs■ manufactured by direct laser metal forming(DLMF) technology exhibits improved capability for bone osteointegration due to its porous surface structure, and has achieved remarkable clinical effect. However, like the traditional titanium and other alloyed implants, the porous titanium implant TixOsR also has relatively weak bioactivity. To address this issue, a proper surface modification method may be needed. Hydroxyapatite(HA) has been widely used in implant surface coating for its similar chemical composition to bone tissue and its osteoconductive properties. Thus, combining TixOs■ implants with hydroxyapatite can be an efficient way to enhance their bioactivity. We herewith reported a competent pulsed laser deposition(PLD) method of coating nano-sized HA thin film onto the porous TixOs■ implant. The HA coatings were characterized by means of scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDS), X-ray photoelectron spectroscopy(XPS) and focused ion beam(FIB) method, and nanocrystal sized thin HA films were identified on the surface of TixOs■ implants. The low cytotoxicity and improved cell proliferation ability of HA coated implants were further tested and verified using MC 3T3 E1 cells with the consideration of the controlling group. Our results show that a stable and bioactive HA tliin film is able to form on the surtace of the porous titanium implant by PLD method.This may benefit the fiirther clinical application of TixOs■ implants.  相似文献   

14.
We carried out the structural, morphological and transport study of PrFe0.5Ni0.5O3 thin films prepared by pulsed laser deposition (PLD) over various substrates. Different substrates like LaAlO3 (001),GaAs(001) and Si(001) were used for deposition to understand effect of lattice mismatch on various physical properties. The film deposited on LaAlO3 was of best quality with well (001)-oriented and having good crystalline properties. Whereas, film deposited on GaAs(001) is well textured. Both films shows semiconducting behavior and resistance of the film deposited on GaAs(001) shows larger than that of film deposited on LAO. However, film deposited on Si, also shows polycrystalline growth with unusual metallic behavior. We tried to correlate this behavior with strain-induced growth of these films. Other possibilities for this unusual trend is also explored.  相似文献   

15.
脉冲激光沉积LiFePO4阴极薄膜材料及其电化学性能   总被引:5,自引:0,他引:5  
采用脉冲激光沉积结合高温退火的方法在不锈钢基片上制备了LiFePO4薄膜电极. XRD谱图显示, 经650 ℃退火制得的是具有橄榄石结构的LiFePO4薄膜. 充放电测试表明, LiFePO4薄膜具有3.45/3.40 V的充放电平台, 与LiFePO4粉体材料相当. 首次放电容量约为27 mAh•g-1, 充放电循环100次后容量衰减51%.  相似文献   

16.
本文采用简易的化学水浴沉积法和自牺牲模板法制备CdS、CdSe薄膜,对两种薄膜进行了XRD表征,比较了两种薄膜的紫外吸收光谱并研究了CdS、CdSe薄膜作为太阳能电池中的光阳极时所产生的光电流和光电压,对两种薄膜的电化学性能进行了比较.  相似文献   

17.
Summary: Titanyl phthalocyanine (TiOPc) thin films were prepared using evaporation and surface polymerization by ion-assisted deposition (SPIAD) in a vacuum deposition system. These films were characterized by means of ultraviolet and X-ray photoelectron spectroscopy as well as UV/Vis absorption spectroscopy. Valence band and elemental content indicated that phthalocyanine electronic and chemical structures were largely preserved during SPIAD. Further, bilayer thin films of titania (TiO2) and SPIAD TiOPc were prepared. TiO2 film was deposited by reactive magnetron sputtering of TiO2 target. Study of the structured samples was focused on the optical and electrical properties of the composite films. The films were characterized by non-contact photovoltage measurements and UV-Vis spectroscopy. These results suggest there is a possibility to use these bilayer thin films in photovoltaic solar cells, however further experiments to improve conductivity of the films will be required.  相似文献   

18.
An automatic and efficient technique to analyze the uniformity of nanoscale images using wavelets, feature similarity index measure (FSIM) and fuzzy inference system is reported. It has been successfully tested on scanning electron micrographs of nanocrystalline silver thin films. Thin films are prepared using on‐axis and off‐axis pulse laser deposition (PLD) technique. It is found that the film prepared using on‐axis PLD is more uniformly distributed and has smoother texture compared with that of the off‐axis technique. In order to analyze the images quantitatively, they are transformed to the wavelet domain to extract the localized frequency variations and a uniformity measure is derived using a fuzzy inference system for quantitatively analyzing the uniformity of each image. The surface plot of the FSIM values of the image is found to be an efficient tool for nanoscientists to evaluate the smoothness of the thin film surfaces. This study is expected to help the nanoscientists to understand these nanostructures in detail. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Polycrystalline ZnS films were prepared by pulsed laser deposition (PLD) on quartz glass substrates under different growth conditions at different substrate temperatures of 20, 200, 400, and 600 ℃, which is a suitable alternative to chemical bath deposited (CBD) CdS as a buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. X-ray diffraction studies indicate the films are polycrystalline with zinc-blende structure and they exhibit preferential orientation along the cubic phase β-ZnS (111) direction, which conflicts with the conclusion of wurtzite structure by Murali that the ZnS films deposited by pulse plating technique was polycrystalline with wurtzite structure. The Raman spectra of grown films show Al mode at approximately 350 cm^-1, generally observed in the cubic phase β-ZnS compounds. The planar and the cross-sectional morphology were observed by scanning electron microscopic. The dense, smooth, uniform grains are formed on the quartz glass substrates through PLD technique. The grain size of ZnS deposited by PLD is much smaller than that of CdS by conventional CBD method, which is analyzed as the main reason of detrimental cell performance. The composition of the ZnS films was also measured by X-ray fluorescence. The typical ZnS films obtained in this work are near stoichiometric and only a small amount of S-rich. The energy band gaps at different temperatures were obtained by absorption spectroscopy measurement, which increases from 3.2 eV to 3.7 eV with the increasing of the deposition temperature. ZnS has a wider energy band gap than CdS (2.4 eV), which can enhance the blue response of the photovoltaic cells. These results show the high-quality of these substitute buffer layer materials are prepared through an all-dry technology, which can be used in the manufacture of CIGS thin film solar cells.  相似文献   

20.
To distinguish thin deposited film characteristics clearly from the influence of substrate morphological properties, the growth mechanism and the macroscale and nanoscale properties of nanoporous SiO(2) films deposited on nonporous silica (SiO(2)) substrates from chemical precursors Si(OH)(4) and TEOS (tetraethoxysilane) via low-pressure chemical vapor deposition are the primary targets of this study. This work employs a kinetic Monte Carlo (KMC) simulation method coupled to the Metropolis Monte Carlo method to relax the strained silica structure. The influence of the deposition temperature (473, 673, and 873 K) on the properties of the SiO(x) layers is addressed via analysis of the film growth rates, density profiles of the deposited thin films, pore size distributions, carbon depth profiles (with respect to TEOS), and voidage analysis for layers of different thicknesses (8-18 nm). A comparison of simulation with experimental results is also carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号