首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe phenomena of colloidal particle transport and separation inside single microdroplets of water floating on the surface of dense fluorinated oil. The experiments were performed on microfluidic chips, where single droplets were manipulated with alternating electric fields applied to arrays of electrodes below the oil. The particles suspended in the droplets were collected in their top region during the evaporation process. Experimental results and numerical simulations show that this microsepration occurs as a result of a series of processes driven by mass and heat transfer. An interfacial tension gradient develops on the surface of the droplet as a result of the nonuniform temperature distribution during the evaporation. This gradient generates an internal convective Marangoni flow. The colloidal particles transported by the flow are collected in the top of the droplets by the hydrodynamic flux, compensating for evaporation through the exposed top surface. The internal flow pattern and temperature distribution within evaporating droplets were simulated using finite element calculations. The results of the simulation were consistent with experiments using tracer particles. Such microseparation processes can be used for on-chip synthesis of advanced particles and innovative microbioassays.  相似文献   

2.
Real surfaces are typically heterogeneous, and microchannels with heterogeneous surfaces are commonly found due to fabrication defects, material impurities, and chemical adsorption from solution. Such surface heterogeneity causes a nonuniform surface potential along the microchannel. Other than surface heterogeneity, one could also pattern the various surface potentials along the microchannels. To understand how such variations affect electrokinetic flow, we proposed a model to describe its behavior in circular microchannels with nonuniform surface potentials. Unlike other models, we considered the continuities of flow rate and electric current simultaneously. These requirements cause a nonuniform electric field distribution and pressure gradient along the channel for both pressure-driven flow (streaming potential) and electric-field-driven flow (electroosmosis). The induced nonuniform pressure and electric field influence the electrokinetic flow in terms of the velocity profile, the flow rate, and the streaming potential.  相似文献   

3.
The interaction of colloidal particles with a planar surface (i.e., wall) in the presence of an electric field applied parallel to the planar surface is of interest in various microfluidic devices. Evanescent wave-based particle-tracking velocimetry was used to investigate the dynamics of a dilute suspension of polystyrene and silica particles (radii a = 110-463 nm) in a monovalent electrolyte solution with a Debye length of 6.8 nm driven through a microchannel by external electric fields E = 15-31 V/cm over the first 300 nm next to the channel wall. The particle velocity parallel to the wall due to electrophoresis and electroosmosis was in good agreement with the Helmholtz-Smoluchowski relation, and the hydrodynamic interactions between the wall and the particles were negligible, for all particle types. Measurements of the distribution of particles along the wall-normal coordinate, however, suggest that an additional force as great as 30 fN that repels the negatively charged particles away from the wall is induced by nonzero E. The results suggest that the magnitude of this force scales as E(2) and a(2) but is independent of the particle ζ-potential, in agreement with previous theoretical studies. However, estimates of the force assuming that the particles have a Boltzmann distribution were up to 40 times greater than the theoretical predictions, which only considered "remote" particle-wall interactions. These results are, to our knowledge, the first to observe a repulsive wall-normal force due to an applied electric field for near-wall colloidal particles.  相似文献   

4.
We study the transition of ordered structures to disordered bands and vortices in colloidal suspensions subjected to AC electric fields. We map the critical frequencies and field biases at which particles form disordered bands and vortices. These results are interpreted based on the trajectory dynamics of particle pairs using blinking optical tweezers. Under conditions that vortices are observed, individual particle pairs rotate out of alignment with the field. The direction and magnitude of these interactions determine the orientation and average angular velocity of the band revolution. Increasing the frequency of the electric field reduces the anomalous rotation of the particles pairs, consistent with the frequency dependence of the suspension order-to-disorder transition. This anomalous rotation is consistent with a torque on doublets generated by the mutual polarization of particles and phase lag of the induced dipoles.  相似文献   

5.
胶体晶体自组装排列进展   总被引:10,自引:0,他引:10  
丁敬  高继宁  唐芳琼 《化学进展》2004,16(3):321-326
自组装排列胶体晶体是发展光子晶体等亚微米周期有序结构及新型光电子器件十分重要的环节.高电荷密度单分散胶体球在较弱的离子强度和稀浓度下会自发排列形成紧密堆积的周期性结构(ccp),常常是面心立方(fcc),科学家们以此为基础发展了多种结晶化胶体粒子的方法,包括重力场沉积、电泳沉积、胶体外延技术、垂直沉积、流通池、物理束缚排列及其他的许多方法.目前排列的胶体粒子基本为球形,材料也多为SiO2、PS、PMMA,此外一些复合粒子,主要为核壳粒子的排列这里也稍作介绍,这些方法及其变通的使用可以形成类蛋白石及反蛋白石结构,最终实现光子带隙及其它多种用途。  相似文献   

6.
In this paper we reported the UV-visible-NIR optical absorption properties of silver colloid, employed as a high efficient substrate in surface-enhanced Raman spectra (SERS), under various conditions. Experimental results revealed that the new absorption band, usually appearing in the longer wavelength region due to the addition of molecules, was related to the direct adsorption of molecules on colloidal silver surface. When the adsorption occurred, this new band would appear. Once the molecules were desorbed from silver surface, the new band could not be observed. Some evidences inferred that the new absorption band was associated with the effect of charge-transfer transition between adsorbates and colloidal silver particles, while not with the effect of the surface plasma resonance due to the silver particles aggregation which was usually attributed to in previous research work.  相似文献   

7.
径向电场调制毛细管电泳法用于蛋白质分离   总被引:1,自引:0,他引:1  
朱英  陈义 《高等学校化学学报》1999,20(10):1533-1537
利用自制的双向电场控制毛细管电泳新系统,考察了蛋白质的分离情况.结果发现,在低pH值下,通过施加径向电场,不仅可改变电渗流的大小和方向,而且能抑制蛋白质的吸附,进而实现对蛋白质分离效率和分离速度的调控.研究结果表明,可通过物理化学方法实现毛细管电泳的动态或随机调控,这对许多生物样品分离有实际意义.  相似文献   

8.
We present a mean-field theory to describe phase separations in mixtures of a nematic liquid crystal and a colloidal particle. The theory takes into account an orientational ordering of liquid crystals and a crystalline ordering of colloidal particles. We calculate phase diagrams on the temperature-concentration plane, depending on interactions between a liquid crystal and a colloidal surface and a coupling between nematic and crystalline ordering. We find various phase separation processes, such as a nematic-crystal phase separation and nematic-isotropic-crystal triple point. Inside binodal curves, we find new unstable and metastable regions which are important in phase ordering dynamics. We also find a stable nematic-crystalline (NC) phase, where colloidal particles dispersed in a nematic phase can form a crystalline structure. The coexistence between two NC phases with different concentrations can be appear though the coupling between nematic and crystalline ordering.  相似文献   

9.
Production and processing of colloidal particles require a deeper understanding of the surface charge of particles and the interaction of mass and charge transport in packed beds. The assessment of fundamental parameters is rather complex due to the additional influence of the particle charge on the structure of a packed bed. The combination of different measurement techniques (streaming potential and electroosmosis) allows for separating the effects, based on the postulation of a new method to quantify the ratio of surface conductance to liquid conductance. The purpose of this paper is to investigate the influence of pH value and compression on the electrohydrodynamic transport parameters.  相似文献   

10.
Zhao C  Yang C 《Electrophoresis》2011,32(5):629-637
An effective electrical boundary condition is formulated to describe AC field-driven induced-charge electrokinetic (ICEK) phenomena at the interface between a liquid and a leaky dielectric solid. Since most materials in reality possess finite dielectric and conductive properties, i.e. leaky dielectric, the present boundary condition can be used to describe the induced zeta potential on a leaky dielectric surface with consideration of both bond charges (due to polarization) and free charges (due to conduction). Two well-known limiting cases, i.e. the perfectly dielectric and the perfectly conducting wall boundary conditions can be recovered from the present formulation. Utilizing the derived boundary condition, we obtain analytical solutions in closed form for the AC field-driven induced-charge electroosmosis (ICEO) over two symmetric leaky dielectric blocks embedded in the walls of an infinitely long microchannel. Two important factors for the induced zeta potential are identified to respectively account for the polarization charges and the free charges, and their effects on AC field-driven ICEO oscillating flow patterns are analyzed. It is found that the flow patterns exhibit two counter-rotating vortices, which can be deformed, relocated, eliminated and even reverse their rotating directions. It is very promising that such temporary evolution of flow patterns can possibly induce chaotic advection which can enhance microfluidic mixing.  相似文献   

11.
The results of studying the surface morphology of heterogeneous cation-(MK-40) and anion-exchange (MA-40) membranes and calculating the structure of electroconvective vortices generated by the electric body force are shown. The body force and its distribution are estimated by taking into account real parameters of the membrane surface morphology. The calculations of vortices were carried out by solving the Navier-Stokes equation with the no-slip boundary condition and the preset body force distribution. It is shown that the body force induced by the flowing current can generate pairs of electroconvective vortices (electroosmosis of the second kind), where the size of induced vortices is comparable with the intermembrane gap in electrodialysis cells.  相似文献   

12.
13.
具有疏水核/亲水壳的双亲胶体粒子的制备   总被引:2,自引:0,他引:2  
制备了具有疏水性聚苯乙烯核/亲水性聚丙烯酰胺壳的双亲粒子.疏水核通过超浓乳液聚合制备,亲水壳层通过过氧化羟基异丙苯和硫酸亚铁的界面引发制备.控制条件可得到网孔(半包覆)、褶皱(全包覆)两种形态的壳层.壳层孔的存在使得核层聚合物能够与外界接触.粒子的双亲性通过吸水吸油率进行表征.  相似文献   

14.
Previous studies have reported a lateral migration in particle electrophoresis through a straight rectangular microchannel. This phenomenon arises from the inherent wall‐induced electrical lift that can be exploited to focus and separate particles for microfluidic applications. Such a dielectrophoretic‐like force has been recently found to vary with the buffer concentration. We demonstrate in this work that the particle zeta potential also has a significant effect on the wall‐induced electrical lift. We perform an experimental study of the lateral migration of equal‐sized polystyrene particles with varying surface charges under identical electrokinetic flow conditions. Surprisingly, an enhanced focusing is observed for particles with a faster electrokinetic motion, which indicates a substantially larger electrical lift for particles with a smaller zeta potential. We speculate this phenomenon may be correlated with the particle surface conduction that is a strong function of particle and fluid properties.  相似文献   

15.
We demonstrate a colloidal optomagnetic dimmer based on the interaction between micrometer-sized paramagnetic colloidal spheres and a magnetic film. The colloidal particles undergo Brownian motion, which when exposed to light results in characteristic intensity fluctuations, and we demonstrate that weak magnetic fields that are typically 200 A/m (2.5 G) can be used to control both the average intensity and the intensity fluctuations. The system can be used as a colloidal optical dimmer in microfluidic systems.  相似文献   

16.
An explicit expression for the wall-nematic direct correlation function (DCF) is obtained for any orientation of the wall with respect to an external orienting field. It is found that inside the surface of the wall, the DCF rapidly tends to a function of the nematogen orientation and depends only on parameters of the bulk fluid. We suggest that the wall-nematic DCF can be used as an ansatz for the colloid-nematic DCF in dilute nematic colloids. The reliability of this ansatz is investigated at different field strengths in both isotropic and nematic regions. Our calculations for spherical colloidal particles show that this approximation is valid for colloidal particles that are large, but well within the physically realistic size range. The ansatz could also be applied to nonspherical colloidal particles.  相似文献   

17.
Monodisperse aqueous emulsion droplets encapsulating colloidal particles were produced in the oil phase, and controlled microwave irradiation of the aqueous drop phase created spherical colloidal crystals by so-called evaporation-induced self-organization of the colloidal particles. Unlike usual colloidal crystals, colloidal crystals in spherical symmetry (or photonic balls) possessed photonic band gaps for the normal incident light independent of the position all over the spherical surface. While the consolidation of colloidal particles in emulsion droplets in an oven took several hours, the present microwave-assisted evaporation could reduce the time for complete evaporation to a few tens of minutes. Under the microwave irradiation, the aqueous phase in emulsions was superheated selectively and the evaporation rate of water could be controlled easily by adjusting the microwave intensity. The result showed that the packing quality of colloidal crystals obtained by the microwave-assisted self-organization was good enough to show photonic band gap characteristics. The reflectance of our photonic balls responded precisely to any change in physical properties including the size of colloidal particles, refractive index mismatch, and angle of the incident beam. In particular, for polymeric particles, the photonic band gap could be tuned by the intensity of microwave irradiation, and the reflection color was red-shifted with stronger microwave irradiation. Finally, for better photonic band gap properties, inverted photonic balls were prepared by using the spherical colloidal crystals as sacrificial templates.  相似文献   

18.
In this study, we demonstrate that mixed reverse micelles are good candidates to be used as nanoreactors for formation of shape-controlled high-quality colloidal nanocrystals and nanowires under mild conditions. Manipulation of the rate of nucleation and subsequent growth of the Au in the mixed reverse micelles induce drastic changes in the particle shape and structure. Here we demonstrate that control of the nucleation and growth kinetics of the Au in the mixed reverse micelles can be used to vary the shapes of the resulting particles from a nearly spherical morphology to cylinders, trigons and cubics. The characterization of the resultant particles, the effects of synthesis conditions (such as concentration of NaCl, addition of glycerol, and reaction temperature) on particle sizes, particle size distribution, and shape of particle formation have been investigated. This study will help us to understand the chemical control synthesis of crystal growth processes at the atomic level.  相似文献   

19.
New physical model is presented resulting in a simple formula for the dependence of viscosity η of colloidal liquid solution on the shear rate G applicable to a wide variety of systems including complex natural liquids like petroleum. The principal point of the model is the fractal nature of colloid particle aggregates present in the liquid. Such aggregates are experimentally detected now in non-Newtonian liquids. The model is based on calculation of energy loss on colloidal particle aggregate of fractal structure localized in the flow of liquid with shear rate. We have performed the viscosity measurement experiments which confirmed successfully the developed physical model. Also, we demonstrate experimentally that petroleum colloidal particles and magnetic iron oxide nanoparticles can form composite fractal-like aggregates in natural petroleum materials. Our model can explain both the non-Newtonian properties of petroleum and sensitivity of petroleum viscosity to external magnetic fields.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号