首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The mini-max spanning forest problem requires to find a spanning forest of an undirected graph that minimizes the maximum of the costs of constituent trees. In a previous work we proved this problem NP-hard. In the current paper we present three lower bounds for this problem and develop a branch-and-bound algorithm to solve the problem exactly. The algorithm is implemented and numerical experiments are conducted on a series of test problems. The experiments compare the performances of the proposed bounds and search strategies in the algorithm as well as investigate the effects of instance characteristics on the behavior of the algorithm. Also, extension of the problem to the case of more than two root vertices as well as to the problem of determining the root locations are discussed.  相似文献   

2.
《Quaestiones Mathematicae》2013,36(4):547-561
Abstract

For a positive integer b, we define a set S of vertices in a graph G as a b-disjunctive dominating set if every vertex not in S is adjacent to a vertex of S or has at least b vertices in S at distance 2 from it. The b-disjunctive domination number is the minimum cardinality of such a set. This concept is motivated by the concepts of distance domination and exponential domination. In this paper, we start with some simple results, then establish bounds on the parameter especially for regular graphs and claw-free graphs. We also show that determining the parameter is NP-complete, and provide a linear-time algorithm for trees.  相似文献   

3.
In this paper we present two lower bounds for the p-median problem, the problem of locating p facilities (medians) on a network. These bounds are based on two separate lagrangean relaxations of a zero-one formulation of the problem with subgradient optimisation being used to maximise these bounds. Penalty tests based on these lower bounds and a heuristically determined upper bound to the problem are developed and shown to result in a large reduction in problem size. The incorporation of the lower bounds and the penalty tests into a tree search procedure is described and computational results are given for problems with an arbitrary number of medians and having up to 200 vertices. A comparison is also made between these algorithms and the dual-based algorithm of Erlenkotter.  相似文献   

4.
Given an undirected graph G with penalties associated with its vertices and costs associated with its edges, a Prize Collecting Steiner (PCS) tree is either an isolated vertex of G or else any tree of G, be it spanning or not. The weight of a PCS tree equals the sum of the costs for its edges plus the sum of the penalties for the vertices of G not spanned by the PCS tree. Accordingly, the Prize Collecting Steiner Problem in Graphs (PCSPG) is to find a PCS tree with the lowest weight. In this paper, after reformulating and re-interpreting a given PCSPG formulation, we use a Lagrangian Non Delayed Relax and Cut (NDRC) algorithm to generate primal and dual bounds to the problem. The algorithm is capable of adequately dealing with the exponentially many candidate inequalities to dualize. It incorporates ingredients such as a new PCSPG reduction test, an effective Lagrangian heuristic and a modification in the NDRC framework that allows duality gaps to be further reduced. The Lagrangian heuristic suggested here dominates their PCSPG counterparts in the literature. The NDRC PCSPG lower bounds, most of the time, nearly matched the corresponding Linear Programming relaxation bounds.  相似文献   

5.
 In this paper, we establish oracle inequalities for penalized projection estimators of the intensity of an inhomogeneous Poisson process. We study consequently the adaptive properties of penalized projection estimators. At first we provide lower bounds for the minimax risk over various sets of smoothness for the intensity and then we prove that our estimators achieve these lower bounds up to some constants. The crucial tools to obtain the oracle inequalities are new concentration inequalities for suprema of integral functionals of Poisson processes which are analogous to Talagrand's inequalities for empirical processes. Received: 24 April 2001 / Revised version: 9 October 2002 / Published online: 15 April 2003 Mathematics Subject Classification (2000): 60E15, 62G05, 62G07 Key words or phrases: Inhomogeneous Poisson process – Concentration inequalities – Model selection – Penalized projection estimator – Adaptive estimation  相似文献   

6.
We study combinatorial and algorithmic questions around minimal feedback vertex sets (FVS) in tournament graphs. On the combinatorial side, we derive upper and lower bounds on the maximum number of minimal FVSs in an n‐vertex tournament. We prove that every tournament on n vertices has at most 1.6740n minimal FVSs, and that there is an infinite family of tournaments, all having at least 1.5448n minimal FVSs. This improves and extends the bounds of Moon (1971). On the algorithmic side, we design the first polynomial space algorithm that enumerates the minimal FVSs of a tournament with polynomial delay. The combination of our results yields the fastest known algorithm for finding a minimum‐sized FVS in a tournament.  相似文献   

7.
Given a connected undirected graph G, the Degree Preserving Spanning Tree Problem (DPSTP) consists in finding a spanning tree T of G that maximizes the number of vertices that have the same degree in T and in G. In this paper, we introduce Integer Programming formulations, valid inequalities and a Branch-and-cut algorithm for the DPSTP. Reinforced with new valid inequalities, the upper bounds provided by the formulation behind our Branch-and-cut method dominate previous DPSTP bounds in the literature.  相似文献   

8.
In this paper, we characterize the extremal graph having the maximal Laplacian spectral radius among the connected bipartite graphs with n vertices and k cut vertices, and describe the extremal graph having the minimal least eigenvalue of the adjacency matrices of all the connected graphs with n vertices and k cut edges. We also present lower bounds on the least eigenvalue in terms of the number of cut vertices or cut edges and upper bounds on the Laplacian spectral radius in terms of the number of cut vertices.  相似文献   

9.
Packing coloring is a partitioning of the vertex set of a graph with the property that vertices in the i-th class have pairwise distance greater than i. The main result of this paper is a solution of an open problem of Goddard et al. showing that the decision whether a tree allows a packing coloring with at most k classes is NP-complete.We further discuss specific cases when this problem allows an efficient algorithm. Namely, we show that it is decideable in polynomial time for graphs of bounded treewidth and diameter, and fixed parameter tractable for chordal graphs.We accompany these results by several observations on a closely related variant of the packing coloring problem, where the lower bounds on the distances between vertices inside color classes are determined by an infinite nondecreasing sequence of bounded integers.  相似文献   

10.

The oracle property of model selection procedures has attracted a large volume of favorable publications in the literature, but also faced criticisms of being ineffective and misleading in applications. Such criticisms, however, have appeared to be largely ignored by the majority of the popular statistical literature, despite their serious impact. In this paper, we present a new type of Hodges’ estimators that can easily produce model selection procedures with the oracle and some other desired properties, but can be readily seen to perform poorly in parts of the parameter spaces that are fixed and independent of sample sizes. Consequently, the merits of the oracle property for model selection as extensively advocated in the literature are questionable and possibly overstated. In particular, because the mathematics employed in this paper are at an elementary level, this finding leads to new discoveries on the merits of the oracle property and exposes some overlooked crucial facts on model selection procedures.

  相似文献   

11.
Cooperative matching games (Shapley and Shubik) and Network bargaining games (Kleinberg and Tardos) are games described by an undirected graph, where the vertices represent players. An important role in such games is played by stable graphs, that are graphs whose set of inessential vertices (those that are exposed by at least one maximum matching) are pairwise non adjacent. In fact, stable graphs characterize instances of such games that admit the existence of stable outcomes. In this paper, we focus on stabilizing instances of the above games by blocking as few players as possible. Formally, given a graph G we want to find a minimum cardinality set of vertices such that its removal from G yields a stable graph. We give a combinatorial polynomial-time algorithm for this problem, and develop approximation algorithms for some NP-hard weighted variants, where each vertex has an associated non-negative weight. Our approximation algorithms are LP-based, and we show that our analysis are almost tight by giving suitable lower bounds on the integrality gap of the used LP relaxations.  相似文献   

12.

Quiver representations arise naturally in many areas across mathematics. Here we describe an algorithm for calculating the vector space of sections, or compatible assignments of vectors to vertices, of any finite-dimensional representation of a finite quiver. Consequently, we are able to define and compute principal components with respect to quiver representations. These principal components are solutions to constrained optimisation problems defined over the space of sections and are eigenvectors of an associated matrix pencil.

  相似文献   

13.
We show that in an arrangement ofn curves in the plane (or on the sphere) there are at leastn/2 points where precisely 2 curves cross (ordinary points). Furthermore there are at least (4/3)n triangular regions in the complex determined by the arrangement. Triangular regions and ordinary vertices are both connected with boundary vertices of certain distinguished subcomplexes. By analogy with rectilinear planar polygons we distinguish concave and convex vertices of these subcomplexes. Our lower bounds arise from lower bounds for convex vertices in the distinguished subcomplexes.  相似文献   

14.
In this paper we give lower bounds and upper bounds for chromatic polynomials of simple undirected graphs on n vertices having m edges and girth exceeding g © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Every convex polytope can be represented as the intersection of a finite set of halfspaces and as the convex hull of its vertices. Transforming from the halfspace (resp. vertex) to the vertex (resp. halfspace) representation is called vertex enumeration (resp. facet enumeration ). An open question is whether there is an algorithm for these two problems (equivalent by geometric duality) that is polynomial in the input size and the output size. In this paper we extend the known polynomially solvable classes of polytopes by looking at the dual problems. The dual problem of a vertex (resp. facet) enumeration problem is the facet (resp. vertex) enumeration problem for the same polytope where the input and output are simply interchanged. For a particular class of polytopes and a fixed algorithm, one transformation may be much easier than its dual. In this paper we propose a new class of algorithms that take advantage of this phenomenon. Loosely speaking, primal—dual algorithms use a solution to the easy direction as an oracle to help solve the seemingly hard direction. Received July 31, 1997, and in revised form March 8, 1998.  相似文献   

16.
We consider the minimum number of cliques needed to partition the edge set of D(G), the distance multigraph of a simple graph G. Equivalently, we seek to minimize the number of elements needed to label the vertices of a simple graph G by sets so that the distance between two vertices equals the cardinality of the intersection of their labels. We use a fractional analogue of this parameter to find lower bounds for the distance multigraphs of various classes of graphs. Some of the bounds are shown to be exact.  相似文献   

17.
Classical reducibilities have complete sets U that any recursively enumerable set can be reduced to U. This paper investigates existence of complete sets for reducibilities with limited oracle access. Three characteristics of classical complete sets are selected and a natural hierarchy of the bounds on oracle access is built. As the bounds become stricter, complete sets lose certain characteristics and eventually vanish. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
 In some areas of theoretical computer science we feel that randomized algorithms are better and in some others we can prove that they are more efficient than the deterministic ones. Approximating the volume of a convex n-dimensional body, given by an oracle is one of the areas where this difference can be proved. In general, if we use a deterministic algorithm to approximate the volume, it requires exponentially many oracle questions in terms of n as n→∞. Dyer, Frieze and Kannan gave a randomized polynomial approximation algorithm for the volume of a convex body K⊆ℝ n , given by a membership oracle. The DKF algorithm was improved in a sequence of papers. The area is full of deep and interesting problems and results. This paper is an introduction to this field and also a survey. Received: January 28, 2003 / Accepted: April 29, 2003 Published online: May 28, 2003  相似文献   

19.
The maximum independent set problem is NP-hard and particularly difficult to solve in sparse graphs, which typically take exponential time to solve exactly using the best-known exact algorithms. In this paper, we present two new novel heuristic algorithms for computing large independent sets on huge sparse graphs, which are intractable in practice. First, we develop an advanced evolutionary algorithm that uses fast graph partitioning with local search algorithms to implement efficient combine operations that exchange whole blocks of given independent sets. Though the evolutionary algorithm itself is highly competitive with existing heuristic algorithms on large social networks, we further show that it can be effectively used as an oracle to guess vertices that are likely to be in large independent sets. We then show how to combine these guesses with kernelization techniques in a branch-and-reduce-like algorithm to compute high-quality independent sets quickly in huge complex networks. Our experiments against a recent (and fast) exact algorithm for large sparse graphs show that our technique always computes an optimal solution when the exact solution is known, and it further computes consistent results on even larger instances where the solution is unknown. Ultimately, we show that identifying and removing vertices likely to be in large independent sets opens up the reduction space—which not only speeds up the computation of large independent sets drastically, but also enables us to compute high-quality independent sets on much larger instances than previously reported in the literature.  相似文献   

20.
For a graph G, we can consider the minimum number of vertices (resp. edges) whose deletion disconnects the graph and such that two of the components created by teh removal of the vertices (resp. the edges, satisfy no additional condition (usual connectivities) or must contain: at least one edge (#connectivities) or at least one cycle (cyclic connectivities). Thus, we can define six sorts of connectivity for a given graph. In this paper, we give upper bounds for the different types of connectivity and results about the graphs reaching these upper bounds or having connectivity 0 and we investigate relations between these six sorts of connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号