首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of pH, concentration of sodium dodecyl sulfate (SDS), additives, and coatings of polymers on the inner wall of fused silica tubing on electrokinetic migration were investigated with SDS solutions. The increase in SDS concentrations caused a substantial increase of the electrophoretic velocity of the SDS micelle but little affected the electroosmotic velocity veo under a constant applied voltage. No significant change in veo was observed either when the pH of the solution was varied from 5.5 to 9 or when additives such as hydroxypropyl cellulose were employed. Compared with an uncoated tube, electroosmosis became stronger in a fused silica tube coated with methyl silicone but weaker in one coated with polyethylene glycol 20M.  相似文献   

2.
The electrophoretic mobility of micron-scale particles is of crucial importance in applications related to pharmacy, electronic ink displays, printing, and food technology as well as in fundamental studies in these fields. Particle mobility measurements are often limited in accuracy because they are based on ensemble averages and because a correction for electroosmosis needs to be made based on a model. Single-particle approaches are better suited for examining polydisperse samples, but existing implementations either require multiple measurements to take the effect of electroosmosis into account or are limited in accuracy by short measurement times. In this work, accurate characterization of monodisperse and polydisperse samples is achieved by measuring the electrophoretic mobility on a particle-to-particle basis while suppressing electroosmosis. Electroosmosis can be suppressed by measuring in the middle of a microchannel while applying an AC voltage with a sufficiently high frequency. An accurate measurement of the electrophoretic mobility is obtained by analyzing the oscillating particle motion for per particle with a high-speed camera measuring at , synchronized to the applied electric field. Attention is paid to take into account the effect of the rolling shutter and the non-uniform sampling in order to obtain the accurate amplitude and phase of the electrophoretic mobility. The accuracy of method is experimentally verified and compared with a commercial apparatus for polystyrene microspheres in water. The method is further demonstrated on a range of particle materials and particle sizes and for a mixture of positively and negatively charged particles.  相似文献   

3.
4.
A new tool for the solution of electromigrative separations in paper-based microfluidics devices is presented. The implementation is based on a recently published complete mathematical model for describing these types of separations, and was developed on top of the open-source toolbox electroMicroTransport , based on OpenFOAM®, inheriting all its features as native 3D problem handling, support for parallel computation, and a GNU GPL license. The presented tool includes full support for paper-based electromigrative separations (including EOF and the novel mechanical and electrical dispersion effects), compatibility with a well-recognized electrolyte database, and a novel algorithm for computing and controlling the electric current in arbitrary geometries. Additionally, the installation on any operating system is available due to its novel installation option in the form of a Docker image. A validation example with data from literature is included, and two extra application examples are provided, including a 2D free-flow IEF problem, which demonstrates the capabilities of the toolbox for dealing with computational and physicochemical modeling challenges simultaneously. This tool will enable efficient and reliable numerical prototypes of paper-based electrophoretic devices to accompany the contemporary fast growth in paper-based microfluidics.  相似文献   

5.
In the present study, we investigate the implications of streaming potential on the mass flow rate control in a microfluidic device actuated by the combined application of a pulsating pressure gradient and a pulsating, externally applied, electric field. We demonstrate that the temporal dynamics due to streaming potential effects may lead to interesting non-trivial aspects of the resultant transport characteristics. Our results highlight the importance of an adequate accounting of the streaming potential effects for temporally tunable mass flow rate control strategies, which may act as a useful design artifice to augment mass flow rates in practical scenarios.  相似文献   

6.
Islam N  Reyna J 《Electrophoresis》2012,33(7):1191-1197
This paper discusses the principle of biased alternating current electroosmosis (ACEO) and its application to move the bulk fluid in a microchannel, as an alternative to mechanical pumping methods. Previous EO-driven flow research has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC (direct current) bias when generating the electric field needed to impart electroosmosis (EO) within a microchannel. The results presented here are numerical and experimental. The numerical results were generated through simulations performed using COMSOL 3.5a. Currently available theoretical models for EO flows were embedded in the software and solved numerically to evaluate the effects of channel geometry, frequency of excitation, electrode array geometry, and AC signal with a DC bias on the flow imparted on an electrically conducting fluid. Simulations of the ACEO flow driven by a constant magnitude of AC voltage over symmetric electrodes did not indicate relevant net flows. However, superimposing a DC signal over the AC signal on the same symmetric electrode array leads to a noticeable net forward flow. Moreover, changing the polarity of electrical signal creates a bi-directional flow on symmetrical electrode array. Experimental flow measurements were performed on several electrode array configurations. The mismatch between the numerical and experimental results revealed the limitations of the currently available models for the biased EO. However, they confirm that using a symmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal.  相似文献   

7.
Chang CC  Wang CY 《Electrophoresis》2008,29(14):2970-2979
The initial electroosmotic flow through a small pore or microchannel with annular or rectangular cross section is studied under the Debye-Hückel approximation. Analytical series solutions and their asymptotic behavior for small and large non-dimensional electrokinetic widths are found for these two basic cases. The explicit and accurate solutions are particularly useful for examining various geometric/physical effects on the transient time scales and the flow rates for the transient states. The steady flow rate of the smaller channel may be disproportionately smaller than a reference channel if the electric double layer is thick, but will be in close proportion to the area ratio if the electric double layer is thin. A smaller channel compared to a reference channel has a shorter transient time scale, and the transient flow has characters very different from the steady state if the electric double layer is thin. The total transient flow rate of several smaller pores or channels may exceed largely that of a single large pore or channel with the same total cross section on the transient time scale of the smaller channels. The results have important implications on liquid transport in micropores or channels by pulse voltages or more general time-varying voltages.  相似文献   

8.
This note provides a few comments on the conditions required for similitude between velocity and electric field in electroosmotic flows. The velocity fields of certain electroosmotic flows with relatively thin electric double layers (EDLs) are known to be irrotational in regions outside of the EDL. Under restricted conditions, the velocity field, V , can be expressed in terms of the electric field, E , as V =cE , where c is a scalar constant. The irrotationality solution is certainly unique and exact for Stokes flow, but may not be stable (or unique) for flows with Reynolds numbers significantly greater than unity.  相似文献   

9.
The present paper addresses microvascular blood flow with heat and mass transfer in complex wavy microchannel modulated by electroosmosis. Investigation is carried out with joule heating and chemical reaction effects. Further, viscous dissipation is also considered. Using Debye–Huckel, lubrication theory, and long wavelength approximations, analytical solutions of dimensionless boundary value problems are obtained. The impacts of different parameters are examined for temperature and concentration profile. Furthermore, nature of pressure rise is also investigated to analyze the pumping characteristics. Important results of flow phenomena are explored by means of graphs.  相似文献   

10.
A novel versatile method for the determination of low or high electroosmotic mobility values in microdevices of variable microchannel design is presented. The electroosmotic flow (EOF) calculation is based on the difference between the apparent and effective mobilities of a reference compound. The proposed method uses microchip frontal electrophoresis for the determination of these mobilities. This requires simple monochannel microchip design and demonstrates versatile and time-saving procedure when compared to conventional current monitoring method when measuring low EOF. It has been applied successfully to the characterization of different coating procedure in glass and poly(dimethylsiloxane) microchips.  相似文献   

11.
Zwitterionic additives provide a means of altering the EOF without increasing conductivity. The magnitude of the EOF in a bare silica capillary increased by as much as 69% upon addition of 500 mM of zwitterion to the running buffer. The EOF enhancement increases linearly with the zwitterion concentration. With zwitterionic additives of the form +NH3-(CH2)n-COO-, the magnitude of the EOF increase is directly related to the number of methylene groups, (n), which ranges from n = 1 to 7. The endgroups on the zwitterions also affect the EOF enhancement. The effect of Z1-methyl (+N(CH3)3CH2CH2CH2SO3-) on EOF was not a function of either the buffer cation or pH. The EOF enhancement is a function of the dielectric increment of the additive and the nature of the amine functionality.  相似文献   

12.
Resistive pulse sensing using solid-state nanopores provides a unique platform for detecting the structure and concentration of molecules of different types of analytes in an electrolyte solution. The capture of an entity into a nanopore is subject not only to the electrostatic force but also the effect of electroosmotic flow originating from the charged nanopore surface. In this study, we theoretically analyze spherical particle electrophoretic behavior near the entrance of a charged nanopore. By investigating the effects of pore size, particle–pore distance, and salt concentration on particle velocity, we summarize dominant mechanisms governing particle behavior for a range of conditions. In the literature, the Helmholtz–Smoluchowski equation is often adopted to evaluate particle translocation by considering the zeta potential difference between the particle and nanopore surfaces. We point out that, due to the difference of the electric field inside and outside the nanopore and the influence from the existence of the particle itself, the zeta potential of the particle, however, needs to be at least 30% higher than that of the nanopore to allow the particle to enter into the nanopore when its velocity is close to zero. Accordingly, we summarize the effective salt concentrations that enable successful particle capture and detection for different pore sizes, offering direct guidance for nanopore applications.  相似文献   

13.
Presented here are the results from numerical simulations applying optical forces orthogonally to electroosmotically induced flow containing both molecular species and particles. Simulations were conducted using COMSOL v4.2a Multiphysics® software including the particle tracking module. The study addresses the application of optical forces to selectively remove particulates from a mixed sample stream that also includes molecular species in a pinched flow microfluidic device. This study explores the optimization of microfluidic cell geometry, magnitude of the applied direct current electric field, EOF rate, diffusion, and magnitude of the applied optical forces. The optimized equilibrium of these various contributing factors aids in the development of experimental conditions and geometry for future experimentation as well as directing experimental expectations, such as diffusional losses, separation resolution, and percent yield. The result of this work generated an optimized geometry with flow conditions leading to negligible diffusional losses of the molecular species while also being able to produce particle removal at near 100% levels. An analytical device, such as the one described herein with the capability to separate particulate and molecular species in a continuous, high‐throughput fashion would be valuable by minimizing sample preparation and integrating gross sample collection seamlessly into traditional analytical detection methods.  相似文献   

14.
We utilize time‐resolved electrokinetic measurements in order to study the electrokinetic properties of silica and TOPAS microfluidic channels as a function of the time history of the fluid–solid interface. In pressure‐driven flow through TOPAS microchannels, the ζ‐potential as inferred from streaming potential measurements decays exponentially by a factor of 1.5 with a characteristic decay time of 3 h after the initial formation of the fluid–solid interface. A similar exponential decay is observed immediately after water is exchanged for ethanol as the solvent in the system. In electroosmotically driven flow through TOPAS microchannels, the ζ‐potential as inferred through current monitoring experiments was constant in time. No electrokinetic transients were observed in silica microchannels under these flow conditions.  相似文献   

15.
Separation efficiency in capillary zone electrophoresis was examined as a function of capillary length and diameter as well as solute concentration for a borosilicate glass capillary/phosphate buffer system. Electroosmotic flow coefficients in borosilicate, fused silica, and teflon capillaries were measured over the useful operating pH range of 3–8 at constant applied power (0.333 W). Sample introduction by a simple, low-dispersion electromigration method was found to be a reliable procedure for solute quantitation.  相似文献   

16.
17.
The characteristics of electroosmotic flow in a cylindrical microchannel with non-uniform zeta potential distribution are investigated in this paper. Two-dimensional full Navier–Stokes equation is used to model the flow field and the pressure field. The numerical results show the distorted electroosmotic velocity profiles and various kinds of flow circulation resulting from the axial variation of the zeta potential. The influences of heterogeneous patterns of zeta potential on the velocity profile, the induced pressure distribution and the volumetric flow rate are discussed in this paper. This work shows that using either heterogeneous patterns of zeta potential or a combination of a heterogeneous zeta potential distribution and an applied pressure difference over the channel can generate local flow circulations and hence provide effective means to improve the mixing between different solutions in microchannels.  相似文献   

18.
19.
A developed mathematical model for calculating potential distribution inside the electrical double layer is explored in this paper based on the Poisson-Boltzmann equation. By modifying the ion concentration, we numerically simulated the potential profile inside the actual electrical double layer according to the zeta potential. Then a theoretical analysis on the streamwise electroosmotic velocity in microscale channel is presented. Furthermore, the expression of the electroosmotic velocity is significantly suppressed after considering the Helmboltz-Smolucbowski equation boundary conditions. The results show that the calculated electroosmotic values basically agree with the experimental ones. Therefore, this provides the data for micro- and nano-channels’ electrophoretic transport, as well as separation of neutral and charged electrolyte.  相似文献   

20.
Electroosmotic flow is an efficient transportation technology driven by applying an external electric field across the microchannel, which has a great potential for future application. This work is presented to study the unsteady electroosmotic flow of viscoelastic fluids combined with a constant pressure gradient and a vertical magnetic field through a parallel plate microchannel. For the reason that the upper and bottom walls of the parallel plate microchannel in microfluidic devices can be made of different materials, this leads to different hydrophobic properties, asymmetric zeta wall potentials, and different slip boundary conditions. The Navier slip model with different slip coefficients at walls is considered. The generalized Maxwell fluid with fractional derivative is adopted for the constitutive equation of the fluid. The analytical and numerical solutions of velocity are derived by employing the integral transform method and finite difference method, respectively. Excellent agreement is found between the numerical solutions and analytical solutions. Finally, the effects of fractional parameter , relaxation time , slip coefficients and , the ratio of wall zeta potentials , Hartmann number , and electrical field strength parameter on velocity profiles are interpreted graphically in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号