首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper novel column solid phase extraction procedure was developed for the determination of Cd(II) and Pb(II) in cows', goats', ewes', buffalos' and humans' milk samples using newly synthesized reagent 2,2′‐DPED3P (2,2′‐{[1,2‐diphenylethane‐1,2‐diylidene]dinitrilo}diphenol) for preconcentration and separation prior to differential pulse polarography using amberlite XAD‐2 in the ranges of pH 4.0–5.0. The sorbed elements were subsequently eluted with 10 mL of 2 M HCl elutes were analysed by differential pulse polarography (DPP). The interference of foreign ions has also been studied. Effects of various instrumental parameters are investigated and received conditions are optimized. The total metal concentration of the milk samples in the study area were in the following ranges 0.030–0.090 μg L?1 of Cd(II), 0.009–0.026 μg L?1 of Pb(II) respectively. The limits of detections were found to be 0.020 and 0.024 μg L?1 for Cd(II) and Pb(II) respectively by applying a preconcentration factor ~40. The proposed enrichment method was applied successfully for the determination of metal ions in cows', goats', ewes', buffalos' and humans' milk samples.  相似文献   

2.
Bismuth film modified and chemically activated carbon micro‐thread electrodes were investigated for the simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry. The carbon thread electrode was characterised using both surface and electrochemical techniques. Electrochemical impedance spectroscopy (EIS) studies demonstrated that the H2SO4/IPA‐treated carbon thread electrode showed a much improved resistance response (Rct=23 Ω) compared to the IPA‐untreated carbon thread (Rct=8317 Ω). Furthermore, parameters such as the effect of deposition potential, deposition time and Bi(III) concentration were explored using square wave voltammetry. Detection limits (S/N=3) for Cd(II) and Pb(II) were found to be 1.08 µg L?1 and 0.87 µg L?1, respectively and response was found to be linear over the range 5–110 µg L?1. The proposed Bi/IPA‐treated carbon thread electrode exhibited a high selectivity towards Cd(II) and Pb(II) even in the presence of a range of heavy metals and is capable of repetitive and reproducible measurements, being attributed to the high surface area, geometry and electrode treatment characteristics. The proposed metal ion sensor was employed to determine cadmium and lead in river water samples and % RSD was found to be 5.46 % and 5.93 % for Cd(II) and Pb(II) respectively (n=3). Such facile sensing components favour the development of cost effective portable devices for environmental sample analysis and electrochemical applications.  相似文献   

3.
Multiwall carbon nanotubes were dispersed in Nafion (MWCNTs‐NA) solution and used in combination with bismuth (MWCNTs‐NA/Bi) for fabricating composite sensors to determine trace Pb(II) and Cd(II) by differential pulse anodic stripping voltammetry (DPASV). The electrochemical properties of the MWCNTs‐NA/Bi composites film modified glassy carbon electrode (GCE) were evaluated. The synergistic effect of MWCNTs and bismuth composite film was obtained for Pb(II) and Cd(II) detection with improved sensitivity and reproducibility. Linear calibration curves ranged from 0.05 to 100 μg/L for Pb(II) and 0.08 to 100 μg/L for Cd(II). The determination limits (S/N=3) were 25 ng/L for Pb and 40 ng/L for Cd, which compared favorably with previously reported methods in the area of electrochemical Pb(II) and Cd(II) detection. The MWCNTs‐NA/Bi composite film electrodes were successfully applied to determine Pb(II) and Cd(II) in real sample, and the results of the present method agreed well with those of atomic absorption spectroscopy.  相似文献   

4.
In this work,we reported a simultaneous determination approach for Pb(II),Cd(II)and Zn(II)atμg L 1concentration levels using differential pulse stripping voltammetry on a bismuth film electrode(BiFE).The BiFE could be prepared in situ when the sample solution contained a suitable amount of Bi(NO)3,and its analytical performance was evaluated for the simultaneous determination of Pb(II),Cd(II)and Zn(II)in solutions.The determination limits were found to be 0.19μg L 1for Zn(II),and0.28μg L 1for Pb(II)and Cd(II),with a preconcentration time of 300 s.The BiFE approach was successfully applied to determine Pb(II),Cd(II)and Zn(II)in tea leaf and infusion samples,and the results were in agreement with those obtained using an atomic absorption spectrometry approach.Without Hg usage,the in situ preparation for BiFE supplied a green and acceptability sensitive method for the determination of the heavy metal ions.  相似文献   

5.
In this study, we demonstrated a highly sensitive electrochemical sensor for the simultaneous detection of Pb (II) and Cd (II) in aqueous solution using carbon paste electrode modified with Eichhornia crassipes powder by square wave anodic stripping voltammetry. The effect of modifier composition, pH, preconcentration time, reduction potential and time, and type of supporting electrolyte on the determination of metal ions were investigated. Pre-concentration on the modified surface was performed at open circuit. The modified electrode exhibited well-defined and separate stripping peaks for Pb (II) and Cd (II). Under optimum experimental conditions, a linear range for both metal ions was from 10 to 5000 μg L?1 with the detection limits of 4.9 μg L?1, 2.1 μg L?1 for Cd(II) and Pb (II), respectively. The modified electrode was found to be sensitive and selective when applied to determine trace amounts of Cd (II) and Pb (II) in natural water samples.  相似文献   

6.
In the present work a new ligand, 2-(2-(phenyl(pyridin-2-yl)methyleneamino)ethylamino)ethanol (L), and its Zn(II) and Cd(II) complexes, [Zn(L)Br2] (1), [Cd(L)Br2] (2) and [Cd(L)I2] (3), have been synthesized and characterized by elemental analysis, FT-IR, Raman and 1H NMR spectroscopies as well as X-ray crystallography. All complexes are isostructural and their metal ions have distorted square pyramidal geometry with an MN3X2 (X: Br, I) environment. During the complexation process, the amine group of the ligand becomes a chiral center. In the solid-state, an R-configuration was observed in all three complexes. Furthermore, the molecules form intermolecular C–H?O, C–H?X and O–H?X (X: Br, I) hydrogen bonds in the solid-state.  相似文献   

7.
The title polymeric complex of Cu(II) and Cd(II) bridged by thiocyanate, Cu(en)2[Cd(SCN)3]2, has been prepared and its structure determined by X-ray diffraction (XRD) methods. The crystal structure reveals that the Cu(II) atom is in an elongated octahedral coordination formed by two SCN anions and two en molecules. The Cd(II) atom is in a distorted octahedral coordination formed by six bridging SCN anions. Two different bridging thiocyanate anions exist in the complex. Both 1,1--SCN and 1,3--SCN anion act a role of bridge ligand and link Cu(II), Cd(II) atoms, and adjacent Cd(II). Cd(II) atoms form the three-dimensional (3-D) network polymeric structure. The IR and UV-Vis spectra have also been investigated.  相似文献   

8.
Two new supramolecular coordination polymers namely {[Cd(NA)2(H2O)]}, SCP 1 and {[Pb(NA)2]}, SCP 2, (NA = nicotinate ligand) were synthesized by self–assembly method and structurally characterized by different analytical and spectroscopic methods. Single-crystal X-ray diffraction showed that SCP 1 extend in three dimensions containing bore structure where the 3D- network is constructed via interweaving zigzag chains. The Cd atom coordinates to (O4N2) atoms forming distorted-octahedral configuration. The structure of SCP 2 extend down the projection of the b-axis creating parallel zigzag 1D-chains connected by μ2-O2 atoms and H-bonds forming a holodirected lead (II) hexagonal bi-pyramid configuration. SCP 2 extend to 3D-network via coordinate and hydrogen bonds. The thermal stability, photoluminescence properties, photocatalytic activity for the degradation of methylene blue dye (MB) under UV-irradiation and sunlight irradiation were also studied.  相似文献   

9.
Silica gel chemically bonded with aminothioamidoanthraquinone was synthesized and characterized. The metal sorption properties of modified silica were studied towards Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). The determination of metal ions was carried out on FAAS. For batch method, the optimum pH ranges for Pb(II), Cu(II) and Cd(II) extraction were ≥3 but for Ni(II) and Co(II) extraction were ≥4. The contact times to reach the equilibrium were less than 10 min. The adsorption isotherm fitted the Langmuir's model showed the maximum sorption capacities of 0.56, 0.30, 0.15, 0.12 and 0.067 mmol/g for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively. In the flow system, a column packed modified silica at 20 mg for Pb(II) and Cu(II), 50 mg for Cd(II), 60 mg for Co(II), Ni(II) was studied at a flow rate of 4 and 2.5 mL/min for Ni(II). The sorbed metals were quantitatively eluted by 1% HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg/L was observed. The application of this modified silica gel to preconcentration of pond water, tap water and drinking water gave high accuracy and precision (%R.S.D. ≤ 9). The method detection limits were 22.5, 1.0, 2.9, 0.95, 1.1 μg/L for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively.  相似文献   

10.
《Analytical letters》2012,45(11):2273-2284
Abstract

A novel voltammetric method—anodic—using a bismuth/poly(aniline) film electrode has been developed for simultaneous measurement of Pb(II) and Cd(II) at low µg L?1 concentration levels by stripping voltammetry. The results confirmed that the bismuth/poly(aniline) film electrode offered high‐quality stripping performance compared with the bismuth film electrode. Well‐defined sharp stripping peaks were observed for Pb(II) and Cd(II), along with an extremely low baseline. The detection limits of Pb(II) and Cd(II) are 1.03 µg L?1 and 1.48 µg L?1, respectively. The bismuth/poly (aniline) electrode has been applied to the determination of Pb(II) in tap water samples with satisfactory results.  相似文献   

11.
Transport of Pb(II) ion from equimolar aqueous solutions of Pb(II), Cu(II) and Cd(II) as well as from aqueous solutions containing only Pb(II) source phase (Cmetal = 1.0 × 10?4 mol L?1) through bulk liquid membranes containing crown ether and oleic acid as carrier has been investigated. The initial fluxes of transported metal ions depend on the hydrophile–lipophile balance (HLB) and molar volumes (Vx) of crown ethers. The initial fluxes of Pb(II), Cu(II), and Cd(II) decrease with increase of HLB value for azacrown ether, i.e., tetraaza-14-crown-4 (A414C4), L1 > benzo-15-crown-5 (B15C5), L2 > 4′-Aminobenzo-15C5, L3 > nitrobenzo-15-crown-5 (NB15C5), L4. The selectivity of the metal ions showed the following separation factors (SF): SFPb–Cu = 2.15, SFCu–Cd = 2.10, SFPb–Cd = 4.52. The highest transport recovery for Pb(II) was observed for L1 (99.3 %).  相似文献   

12.
We report for the first time the synthesis of bismuth-modified (3-mercaptopropyl) trimethoxysilane (MPTMS) and its application for the determination of lead and cadmium by anodic stripping voltammetry. Xerogels made from bismuth-modified MPTMS and mixtures of it with tetraethoxysilane, under basic conditions (NH3·H2O), were characterized with scanning electron microscopy, energy dispersive spectroscopy, infrared spectroscopy and electrochemical methods. Bismuth-modified xerogels were mixed with 1.5% (v/v) Nafion in ethanol and applied on glassy carbon electrodes. During the electrolytic reductive deposition step, the bismuth compound on the electrode surface was reduced to metallic bismuth. The target metal cations were simultaneously reduced to the respective metals and were preconcentrated on the electrode surface by forming an alloy with bismuth. Then, an anodic voltammetric scan was applied in which the metals were oxidized and stripped back into the solution; the voltammogram was recorded and the stripping peak heights were related to the concentration of Cd(II) and Pb(II) ions in the sample. Various key parameters were investigated in detail and optimized. The effect of potential interferences was also examined. Under optimum conditions and for preconcentration period of 4 min, the 3σ limit of detection was 1.3 μg L−1 for Pb(II) and 0.37 μg L−1 for Cd(II), while the reproducibility of the method was 4.2% for lead (n = 5, 10.36 μg L−1 Pb(II)) and 3.9% for cadmium (n = 5, 5.62 μg L−1 Cd(II)). Finally, the sensors were applied to the determination of Cd(II) and Pb(II) ions in water samples.  相似文献   

13.
A simple electroanalytical method for Cd(II) and Pb(II) detection based on differential pulse anodic stripping voltammetry (DPSV) with in situ prepared antimony-modified glassy carbon rotating disk electrode (in situ Sb-GC-RDE) was developed. The electrochemical detection was performed in a microdroplet (50 μL) of 0.01 M hydrochloric acid that is placed between the electrode surface (top) and a Parafilm®-covered glass slide to maintain a hydrophobic surface (bottom). This method includes a preconcentration process using a membrane filter (MF). The target metal ions were complexed with 1-(2-pyridylazo)-2-naphthol (PAN) as a chelating agent, which was accumulated on the MF via filtration. The RDE microdroplet anodic stripping voltammetry was suitable for the elution and determination of metal ions accumulated on the MF. The in situ preparation of antimony-modified electrode allows the use of common GC electrode with high performance. The detection limits for Cd(II) and Pb(II) were 1.4 and 1.1 μg/L, respectively. The proposed method was successfully used in natural water samples for the simultaneous determination of Cd(II) and Pb(II).  相似文献   

14.
Ofloxacin was successfully used as a chemical modifier to improve the reactivity of silica gel in terms of selective binding and extraction of heavy metal ions. This new functionalised silica gel (SG-ofloxacin) was as an effective sorbent for the solid-phase extraction (SPE) of Cd(II) and Pb(II) in biological and natural water samples and their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). Experimental conditions for effective adsorption of trace levels of Cd(II) and Pb(II) were optimised with respect to different experimental parameters using the batch and column procedures. The time for 70% sorption for Cd(II) and Pb(II) was less than 2 min. Complete elution of the adsorbed metal ions from the SG-ofloxacin was carried out using 2.0 mL of 0.5 mol L?1 of HCl. Common coexisting ions did not interfere with the separation and determination at pH 4.0. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.17 and 48.69 mg g?1 for Cd(II) and Pb(II), respectively. The detection limits of the method were found to be 0.29 and 0.13 ng mL?1 for Cd(II) and Pb(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was lower than 3.0% (n = 5). The method was applied to the recovery of Cd(II) and Pb(II) from the certified reference material (GBW 08301, river sediment) and to the simultaneous determination of these cations in different water and biological samples with satisfactory results and yielding 100-folds enrichment factor.  相似文献   

15.
A novel chelating resin (poly-Cd(II)-DAAB-VP) was prepared by metal ion imprinted polymer (MIIP) technique. The resin was obtained by one pot reaction of Cd(II)-diazoaminobenzene-vinylpyridine with cross-linker ethyleneglycoldimethacrylate (EGDMA). Comparing with non-imprinted resin, the poly-Cd(II)-DAAB-VP has higher adsorption capacity and selectivity for Cd(II). The distribution ratio (D) values for the Cd(II)-imprinted resin show increase for Cd(II) with respect to both D values of Zn(II), Cu(II), Hg(II) and non-imprinted resin. The relatively selective factor (αr) values of Cd(II)/Cu(II), Cd(II)/Zn(II) and Cd(II)/Hg(II), are 51.2, 45.6, and 85.4, which are greater than 1. poly-Cd(II)-DAAB-VP can be used at least 20 times without considerable loss of adsorption capacity. Based on poly-Cd(II)-DAAB-VP packed columns, a highly selective solid-phase extraction (SPE) and preconcentration method for Cd(II) from aqueous solution was developed. The MIIP-SPE preconcentration procedure showed a linear calibration curve within concentration range from 0.093 to 30 μg l−1. The detection limit and quantification limit were 0.093 and 0.21 μg l−1 (3σ) for flame atomic absorption spectrometry (FAAS). The relative standard deviation of the eleven replicate determinations was 3.7% for the determination of 10 μg of Cd(II) in 100 ml water sample. Determination of Cd(II) in certified river sediment sample (GBW 08301) demonstrated that the interfering matrix had been almost removed during preconcentration. The column was good enough for Cd(II) determination in matrixes containing components with similar chemical property such as Cu(II), Zn(II) and Hg(II).  相似文献   

16.
Total dissolved and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) were determined at six locations of the Bourgas Gulf of the Bulgarian Black Sea coast. Solid phase extraction procedure based on monodisperse, submicrometer silica spheres modified with 3-aminopropyltrimethoxysilane followed by the electrothermal atomic absorption spectrometry (ETAAS) was developed and applied to quantify the total dissolved metal concentrations in sea water. Quantitative sorption of Cd, Cu, Ni and Pb was achieved in the pH range 7.5–8, for 30?min, adsorbed elements were easily eluted with 2?mL 2?mol?L?1 HNO3. Since the optimal pH for quantitative sorption coincides with typical pH of Black Sea water (7.9–8.2), on-site pre-concentration of the analytes without any additional treatment was possible. Detection limits achieved for total dissolved metal quantification were: Cd 0.002?µg?L?1, Cu 0.005?µg?L?1, Ni 0.03?µg?L?1, Pb 0.02?µg?L?1 and relative standard deviations varied from 5–13% for all studied elements (for typical Cd, Cu, Ni and Pb concentrations in Black Sea water). Open pore diffusive gradients in thin films (DGT) technique was employed for in-situ sampling and pre-concentration of the sea water and in combination with ETAAS was used to determine the proportion of dynamic (mobile and kinetically labile) species of Cd(II), Cu(II), Ni(II) and Pb(II) in the sea water. Obtained results showed strong complexation for Cu and Pb with sea water dissolved organic matter. The ratios between DGT-labile and total dissolved concentrations found for Cu(II) and Pb(II) were in the range 0.2–0.4. For Cd and Ni, these ratios varied from 0.6 to 0.8, suggesting higher degree of free and kinetically labile species of these metals in sea water.  相似文献   

17.
Two new metal complexes [Zn( L1 )]n ( 1 ) and [Cd3( L2 )2Cl2(H2O)6]n ( 2 ) (H2 L1 = 1,5‐bis(tetrazol‐5‐yl)‐3‐oxapentane, H2 L2 = bis(tetrazol‐5‐yl)methane) have been synthesized and characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction analysis. Complex 1 was a 2‐D sheet constructed by L1 and Zn(II) center, further assembled to form a three‐dimensional (3‐D) supramolecular networks through weak hydrogen‐bonding interactions. In the complex 2 , there were two unequivalent Cd(II) centers, and some of ligands L2 adopted chelate coordination mode, and others adopted bridge coordination mode linking the Cd1 center and simultaneously bridging the Cd2 center, the Cl anions adopted μ2 bridging mode, ligands L2 and the Cl anions linked the Cd(II) centers to form a 3‐D supramolecular networks.  相似文献   

18.
《Electroanalysis》2017,29(3):880-889
A new method for modifying electrodes with Ag nanoparticles (AgNPs) using electrospray deposition for sensitive, selective detection of Zn(II), Cd(II), and Pb(II) in aerosol samples when combined with Bismuth and Nafion coating and square‐wave anodic stripping voltammetry (SWASV) is reported. Carbon stencil‐printed electrodes (CSPEs) fabricated on a polyethylene transparency (PET) sheet were produced for an inexpensive, simple to fabricate, disposable sensor that can be used with the microliter sample volumes for analysis. Sensor performance was improved by modifying the electrode surface with electrospray‐deposited AgNPs. The use of electrospray deposition resulted in more uniform particle dispersion across the electrode surface when compared to drop‐casting. Using AgNP‐modified electrodes combined with Bi and Nafion, experimental detection limits (LODs) of 5.0, 0.5, and 0.1 μg L−1 for Zn(II), Cd(II), and Pb(II), respectively, were achieved. The linear working ranges were 5.0–400.0 μg L−1, 0.5–400.0 μg L−1, and 0.1–500.0 μg L−1 for Zn(II), Cd(II), and Pb(II), respectively. Interference studies showed Cu(II) was the only metal that interfered with this assay but inference could be eliminated with the addition of ferricyanide directly to the sample solution. This electrochemical sensor was applied for the simultaneous determination of Zn(II), Cd(II), and Pb(II) within source particulate matter (PM) samples collected on filters using an aerosol test chamber.  相似文献   

19.
Excessive heavy metals in the water constitute a health hazard to humans, yet it may be efficiently purified using adsorbents. Herein, for the first time, UiO-66-NH2 was modified by Glycidyl methacrylate (GMA) via microwave heating method to investigate its potential for adsorption of Pb(II) and Cd(II) metal ions. Synthesized MOF was characterized by TGA, XRD, BET, FE-SEM-EDX, and FTIR. The MOF has a huge surface area of 1144 m2/g, a mean pore diameter of 2.84 nm, and a total pore volume of 0.37 cm3/g. The effect of UiO-66-GMA performance was evaluated by investigating the impact of pH (1–9), contact time (0–200 min), initial metal ions concentration (20–1000 mg/L), temperature (25–55 °C), adsorbent dosage (0.5–3 g/L), and co existences of other metals was investigated on Pb(II) and Cd(II) percentage removal. Following an analysis of the adsorption isotherms, kinetics, and thermodynamics, the Temkin isothermal model showed an excellent fit with the adsorption data (R2 = 0.99). The adsorption process was a spontaneous endothermic reaction and kinetically followed the pseudo-second-order kinetics model. Microwave heating method produced highly crystalline small Zr-MOF nanoparticles with a short reaction time. It promoted the simple yet highly efficient synthesis of Zr-based MOFs, as shown by the reaction mass space-time yield. The adsorption capability of Pb to the presence of several polar functional groups, including as primary and secondary amines, ester, alkene, and hydroxyl groups. This adsorbent is a potential candidate for wastewater treatment due to its outstanding structural stability in acidic and basic solutions, high removal efficiency, and recyclability.  相似文献   

20.
Varying coordination modes of the Schiff base ligand H2L [5-methyl-1-H-pyrazole-3-carboxylic acid (1-pyridin-2-yl-ethylidene)-hydrazide] towards different metal centers are reported with the syntheses and characterization of four mononuclear Mn(II), Co(II), Cd(II) and Zn(II) complexes, [Mn(H2L)(H2O)2](ClO4)2(MeOH) (1), [Co(H2L)(NCS)2] (2), [Cd(H2L)(H2O)2](ClO4)2 (3) and [Zn(H2L)(H2O)2](ClO4)2 (4), and a binuclear Cu(II) complex, [Cu2(L)2](ClO4)2 (5). In the complexes 1-4 the neutral ligand serves as a 3N,2O donor where the pyridine ring N, two azomethine N and two carbohydrazine oxygen atoms are coordinatively active, leaving the pyrazole-N atoms inactive. In the case of complex 5, each ligand molecule behaves as a 4N,O donor utilizing the pyridine N, one azomethine N, the nitrogen atom proximal to the azomethine of the remaining pendant arm and one pyrazole-N atom to one metal center and the carbohydrazide oxygen atom to the second metal center. The complexes 1-4 are pentagonal bipyramidal in geometry. In each case, the ligand molecule spans the equatorial plane while the apical positions are occupied by water molecules in 1, 3 and 4 and two N bonded thiocyanate ions in 2. In complex 5, the two Cu(II) centers have almost square pyramidal geometry (τ = 0.05 for Cu1 and 0.013 for Cu2). Four N atoms from a ligand molecule form the basal plane and the carbohydrazide oxygen atom of a second ligand molecule sits in the apex of the square pyramid. All the complexes have been X-ray crystallographically characterized. The Zn(II) and Cd(II) complexes show considerable fluorescence emission while the remaining complexes and the ligand molecule are fluorescent silent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号