首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
An electrochemical method for the preparation of poly(pyronin B) film was proposed in this paper. A poly(pyronin B) (poly(PyB)) film modified glassy carbon electrode (GCE) has been fabricated via an electrochemical oxidation procedure and applied to the electrocatalytic oxidation of reduced form of nicotinamide adenine dinucleotide (NADH). The poly(PyB) film modified electrode surface has been characterized by atomic force microscope (AFM), scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), UV‐visible absorption spectrophotometry (UV‐vis) and cyclic voltammetry (CV). These studies have been used to investigate the poly(PyB) film, which demonstrates the formation of the polymer film and the excellent electroactivity of poly(PyB) in neutral and even in alkaline media. Due to its potent catalytic effects towards the electrooxidation of NADH at lower potential (0.0 V), poly(PyB) film modified electrode can be used for the selective determination of NADH in real samples because of dopamine, ascorbic acid and uric acid oxidation can be avoided at this potential. The catalytic peak currents are linearly dependent on the concentrations of NADH in the range of 1.0×10?6 to 5.0×10?4 mol/L with correlation coefficients of 0.999. The detection limits for NADH is 0.5×10?6 mol/L. Poly(PyB) modified electrode also shows good stability and reproducibility due to the irreversible attachment of polymer film at GCE surface.  相似文献   

2.
In this study; a sensitive, selective, and simple electrochemical sensor was developed to determine low concentration pyridoxine (Py) using a phosphorus-doped pencil graphite electrode (P-doped/PGE). Electrode modification was implemented using the chronoamperometry method at +2.0 V constant potential and 100 seconds in 0.1 mol L−1 H3PO4 supporting electrolyte solution. The characterization processes of the P-doped/PGE were carried out using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscope (AFM) methods. In the concentration study, using the differential pulse voltammetry (DPV) method, a linear calibration plot was acquired in the concentration range of 0.5 to 300 μmol L−1 Py. The limit of quantification (LOQ) and limit of detection (LOD) of the developed method were calculated as 0.219 μmol L−1 and 0.0656 μmol L−1, respectively. Detection of Py has been successfully performed on the P-doped/PGE in the beverage samples. As a result, the method developed has been shown to have fast, low cost, and simple for the sensitive and selective detection of Py as an effective electrode.  相似文献   

3.
A novel voltammetric method was successfully applied for the determination of an anticholinergic drug, oxybutynin hydrochloride (OXB). The method is concerned with electrooxidation of the drug on the surface of pencil graphite electrode (PGE). In order to enhance the electrode sensitivity and peak current, the electrode was coated with gold nanoparticles (Au-NPs) via electrochemical deposition using cyclic voltammetry from gold salt solution. The surface of Au-NPs modified PGE has been characterized using scanning electron microscopy and X-ray photoelectron spectroscopy. Various experimental variables were studied and optimized to enhance the sensor's response towards OXB. Quantitative determination of the drug was achieved in phosphate buffer pH 7.5 using differential pulse voltammetry by scanning the potential over range of 0.00 to 2.20 V with scan rate of 40 mV s−1. Validation of the method was achieved according to ICH guidelines. The method was found to be linear over concentration range (2.0×10−7–1.0×10−6 M). The suggested sensor was efficiently developed for the quantitative determination of OXB in pure form, pharmaceutical dosage form and spiked plasma samples.  相似文献   

4.
In this work, an economically viable, very low cost, indigenous, ubiquitously available electrochemical sensor based on bimetallic nickel and tungsten nanoparticles modified pencil graphite electrode (NiNP-WNP@PGE) was fabricated for the sensitive and selective detection of bisphenol A (BPA). The NiNP-WNP@PGE sensor was prepared by a facile electrochemical one step co-deposition method. The prepared nanocomposite was morphologically characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), electrochemically by cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The proposed sensor displayed high electrocatalytic activity towards electro-oxidation of BPA with one irreversible peak. The fabricated sensor displayed a wide detection window between 0.025 μM and 250 μM with a limit of detection of 0.012 μM. PGE sensor was successfully engaged for the detection of BPA in bottled water, biological, and baby glass samples.  相似文献   

5.
A new carbon nanotubes modified electrode (poly‐Nq‐MWCNTs/GCE) was fabricated by electropolymerization of 1,2‐naphththoquinone to the surface of multi‐walled carbon nanotubes modified electrode by casting method. The morphology of the nanocomposite was characterized by scanning electron microscopy. Cyclic voltammetry and chronoamperometry were applied to investigate the electrochemical properties of the poly‐Nq‐MWCNTs nanocomposite modified electrode. The result of electrochemical experiments showed that such modified electrode had a favorable catalytic ability to oxidation of β‐nicotinamide adenine dinucleotide (NADH). The resulted sensor was sensitiveness to NADH and achieved 95β of the steady‐state current within 5s. Furthermore, the anodic peak current was linear to the concentration of NADH for the range from 1.0 μM to 0.14 mM. The linear equation was: I(μA) = 0.3987 + 0.1035c (μmol/L), the correlation coefficient r = 0.9962, the detect limit is down to 1 × 10?7 M (S/N = 3) and the sensitivity is 0.1035 μA/mmol. The well catalytic activity of the sensor was ascribed to the synergistic effect role played by MWCNTs and poly‐Nq. Moreover, the based sensor possesses good stability and reproducibility.  相似文献   

6.
Polyaniline (PANI)/Au composite nanotubes were synthesized and developed as an electrode material for a nicotinamide adenine dinucleotide (NADH) sensor. A MnO2 self-degradable template method was used to prepare the tube-like PANI nanomaterial. By introducing PANI nanotubes into Au colloid, Au nanoparticles (NPs) were successfully decorated onto the surface of PANI nanotubes through electrostatic effects. The morphology, composition, and optical properties of the resulting products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) absorption spectra, and thermogravimetric analysis (TGA). In addition, the obtained PANI/Au composites were used as catalysts for the electrochemical oxidation of NADH. Cyclic voltammogram (CV) experiments indicated that PANI/Au-modified glassy carbon electrode showed a higher electrocatalytic activity towards the oxidation of NADH in a neutral environment. Differential pulse voltammogram (DPV) results illustrated that the fabricated NADH sensor had excellent anti-interference ability and displayed a wide linear range from 4?×?10?4 to 8?×?10?3 M with a detection limit of 0.5?×?10?7 M.  相似文献   

7.
The results of electrochemical studies on the reaction of tetrabutyl- and tetramethylammonium (TBA+ and TMA+) ion transfer from water to 1,2-dichloroethane are presented in this paper and are compared with se of the water—nitrobenzene interface. The TMA+ ion transfer has been studied by the chronopotentiometric cyclic voltammetry methods and that of the TBA+ ion by the chronopotentiometric method only.It has been found that the reactions are diffusion controlled over the current density range up to about 1O μA cm?2 and at polarization rates up to 0.15V s?1. Diffusion coefficients of the studied ions have been detemined, as well as their formal potentials with respect to an ion-selective tetrabutylammonium electrode to a partition electrode containing tetraethylammonium picrate whose potential is close to zero. In additon, kinetic parameters of the transfer reaction have been determined for the tetrabutylammonium ion from data obtained at current densities over 10 μA cm?2 (irreversible range).  相似文献   

8.
Novel nickel‐copper modified pencil graphite electrode (Ni?Cu/PGE) was fabricated and used as non‐enzymatic sensor for glucose determination. Ni and copper were electrodeposited on PGE using cyclic voltammetry. Morphology and composition of the modified PGE electrode were characterized by field‐emission gun scanning electron microscopy (FEG‐SEM), energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT‐IR). Electrochemical oxidation of glucose was evaluated by cyclic voltammetry as well as by amperometry. Electrochemical measurements indicate that the Ni?Cu/PGE exhibits a high sensitivity of 2951 μA mM?1 cm?2, and a low detection limit of 0.99 μM which are, respectively, three times higher and twice lower than that on Ni/PGE prepared in the same conditions. Moreover, Ni?Cu/PGE exhibits a wider linear range from 1 to 10000 μM with a rapid response time within 2 s. Moreover, Ni?Cu/PGE showed a remarkable stability. The electrode was successfully applied for determination of glucose concentration in human blood without significant interference from potential endogenic interferents. The good applicability of the elaborated sensor made Ni?Cu/PGE promising for the development of effective and inexpensive non‐enzymatic glucose sensor.  相似文献   

9.
银纳米修饰电极的制备及电化学行为   总被引:7,自引:0,他引:7       下载免费PDF全文
金属纳米粒子由于其小的体积和大的比表面积而具有独特的电子、光学和异相催化特性,是目前表面纳米工程及功能化纳米结构制备的一种理想研究对象[1]。银纳米粒子可广泛应用于催化剂材料、电池的电极材料、低温导热材料和导电材料等,成为近年来人们研究的热点[2,3]。在电化学方面,银纳米粒子具有比其他纳米粒子更为优异的导电性能和电催化性能。因此,研究银纳米粒子修饰电极有重要的应用价值和前景[4]。1实验部分1.1仪器CHI660电化学工作站(USA);TU-1901型双光束紫外可见分光光度计(北京普析通用仪器公司);KQ-100型超声清洗器(昆山市超声…  相似文献   

10.
采用直流电弧等离子体喷射化学气相沉积法把石墨烯生长在钛(Ti)基底上,并采用电化学氧化聚合法在石墨烯表面沉积聚3,4-乙烯二氧噻吩(PEDOT),由此构造PEDOT/石墨烯/Ti电极。形貌及结构表征结果表明,电聚合200圈以上的PEDOT呈线状或泡沫状且均匀分布于石墨烯表面。电化学性能测试结果表明,PEDOT/石墨烯/Ti电极具有高的比电容和库伦效率;其电聚合次数为400圈时,与PEDOT/Ti电极相比,比电容提高42倍,其最大电势窗口可达1.4 V,而在0~1.2 V电势窗口范围内,扫描速度为10 mV·s-1时,比电容可达到269.6 mF·cm-2。  相似文献   

11.
In this work, the capability of carbon nanofibers to be used for the design of catalytic electrochemical biosensors is demonstrated. The direct electrochemistry of NADH was studied at a glassy carbon electrode modified using carbon nanofibers. A decrease of the oxidation potential of NADH by more than 300 mV is observed in the case of the assembled carbon nanofiber‐glassy carbon electrode comparing with a bare glassy carbon electrode. The carbon nanofiber‐modified electrode exhibited a wide linear response range of 3×10?5 to 2.1×10?3 mol L?1 with a correlation coefficient of 0.997 for the detection of NADH, a high specific sensitivity of 3637.65 (μA/M cm2), a low detection of limit (LOD=3σ) of 11 μM, and a fast response time (3 s). These results have confirmed the fact that the carbon nanofibers represent a promising material to assemble electrochemical sensors and biosensors.  相似文献   

12.
A novel and useful method to catalyze the electro‐oxidation of nicotinamide adenine dinucleotide (NADH) over a glassy carbon electrode (GCE) modified with graphene oxide (GO) is presented. Based on the presence of oxygen moieties in GO, which can be easily reduced, an in situ electrochemical generation of reduced graphene oxide (denoted as erGO) applying a sufficient negative potential. A potential of ?1.000 V was selected to generate the erGO/GCE as a pretreatment potential before the detection of NADH. The in situ generated erGO/GCE system produces a decrease in the overpotential of NADH oxidation from +0.720 V to +0.230 V compared with GCE. The process also produced an important increase in current signals. The modified electrode was characterized by scanning electron (SEM) and electrochemical microscopies (SECM), cyclic voltammetry and by Raman spectroscopy. Amperometric detection of NADH via this straightforward electrocatalytic method provides a wide linear range between 10 and 100 μM, a lower detection limit of 0.36 μM and an excellent sensitivity of (1.47±0.09) μA mM?1.  相似文献   

13.
Copper oxide decorated multi‐walled carbon nanotube (MWCNT) modified glassy carbon electrode (GCE) was prepared for determination of isoniazid (INZ) in various matrices. The electrochemical behavior of INZ was tested with the aid of Cyclic Voltammetry (CV) and quantitative experiments were performed by using Linear Sweep Voltammetry (LSV). Morphological and structural characterization of the modified electrode was performed by utilizing Scanning Electron Microscopy (SEM), X‐Ray Photoelectron Spectroscopy (XPS) while electrochemical characterization was performed by using CV and Electrochemical Impedance spectroscopy (EIS). The proposed sensor exhibited well defined anodic peak at 0.30 V for INZ at pH 6.0 medium. Under the optimum conditions, a linear relation between INZ concentration and peak current was observed in the range of 2.0×10?7 to 5.0×10?5 M. Limit of detection was calculated as 1.0×10?8 M and repeatability and accuracy was found as 5.60 % and 91.0 % for 5.0 10?7 M INZ by using 3 successive measurement, respectively. Then, the analytic performance of the electrode developed was tested by analyzing commercial tablets, artificial human serum and urine samples. The results indicated that satisfactory recoveries was observed for all issue.  相似文献   

14.
《Electroanalysis》2005,17(9):744-748
Magnetic nanoparticles of Fe3O4 approximately 5nm in size were synthesized and characterized by XRD and TEM. A novel gold electrode modified with Fe3O4 nanoparticles was then constructed and was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified electrode exhibited strong promoting effect and high stability toward the electrochemical oxidation of dopamine (DA), which gave reversible redox peaks with a formal potential of 0.192 V (vs. Ag/AgCl) electrode in pH 7.0 phosphate buffer solution (PB). The anodic peak currents (measured by constant potential amperometry) increased linearly with the concentration of dopamine in the range of 1.5×10?7 to 4.0×10?4 M. The detection limit (S/N=3) obtained was 3.0×10?8 M. The relative standard deviation (RSD) of 8 successive scans was 3.41% for 1.5×10?6 M DA. The interference of ascorbic acid (AA) could be eliminated efficiently. The proposed method showed excellent sensitivity and recovery.  相似文献   

15.
《Electroanalysis》2017,29(10):2385-2394
In this present scenario, for the first time, we propose a facile and simple wet chemical approach for the fabrication of two‐dimensional (2D) cerium tungstate (CeW2O9;CeW) nanosheets and evaluated as an electrochemical sensor for the detection of nitrite ions. The successful formation of CeW2O9 nanosheets was confirmed by various physicochemical techniques such as X‐ray diffraction, Fourier transform infrared spectroscopy, Raman, Scanning electron microscope, Transmission electron microscope and Energy dispersive X‐ray studies. The electrochemical properties of the CeW nanosheets were studied by using cyclic voltammograms (CV) and chronoamperometric techniques. As an electrochemical sensor, the CeW nanosheets modified glassy carbon electrode (GCE) showed superior electrocatalytic activity in the oxidation of nitrite in terms of higher anodic peak current and lower oxidation potential when compared with unmodified GCE. CeW nanosheets based electrochemical sensor has been fabricated which detect nitrite in wide linear response range, good sensitivity and very low detection limit of 0.02–986 μM, 2.85 μA μM−1 cm−2 and 8 nM, respectively. Moreover, the CeW nanosheets modified GCE exhibited excellent selectivity even in the presence of common metal ions and biologically co‐interfering compounds. For the practical viability of the prepared amperometric sensor has been utilized in various water samples such as tap, lake and drinking water and the obtained recoveries are appreciable.  相似文献   

16.
In this paper, an electrochemical sensor was prepared based on the modification of pencil graphite electrode (PGE) by hollow platinum nanoparticles/reduced graphene oxide (HPtNPs/rGO/PGE) for determination of ceftazidime (CFZ). Initially, rGO was electrodeposited on the electrode surface, and then, hollow platinum nanoparticles were placed on the electrode surface via galvanic displacement reaction of Pt(IV) ions with cobalt nanoparticles (CoNPs) that had electrodeposited on the electrode surface. Several significant parameters controlling the performance of the HPtNPs/rGO/PGE were examined and optimized using central composite design as one optimization methodology. The surface morphology and elemental characterization of the bare PGE, rGO/PGE, CoNPs/rGO/PGE, and HPtNPs/rGO/PGE-modified electrodes was analyzed by field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy. The electrochemical activity of CFZ on resulting modified electrode was investigated by cyclic voltammetry (CV) and adsorptive differential pulse voltammetry (AdDPV). Adsorptive differential pulse voltammetry indicates that peak current increases linearly with respect to increment in CFZ concentration. CFZ was determined in the linear dynamic range of 5.0 × 10?13 to 1.0 × 10?9 M, and the detection limit was determined as 2.2 × 10?13 M using AdDPV under optimized conditions. The results showed that modified electrode has high selectivity and very high sensitivity. The method was used to determine of CFZ in drug injection and plasma samples.  相似文献   

17.
The electrochemical processes of irreversibly adsorbed antimony (Sbad) on Au electrode were investigated by cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM). CV data showed that Sbad on Au electrode yielded oxidation and reduction features at about 0.15 V (vs saturated calomel electrode, SCE). EQCM data indicated that Sbad species were stable on Au electrode in the potential region from −0.25 to 0.18 V (vs SCE); the adsorption of Sb inhibited the adsorption of water and anion on Au electrode at low electrode potentials. Sb2O3 species was suggested to form on the Au electrode at 0.18 V. At a potential higher than 0.20 V the Sb2O3 species could be further oxidized to Sb(V) oxidation state and then desorbed from Au electrode.  相似文献   

18.
Yan Zhang  Jing Zheng  Mandong Guo 《中国化学》2016,34(12):1268-1276
An innovative molecularly imprinted electrochemical sensor was fabricated based on reduced graphene oxide (RGO) and gold nanocomposite (Au) for rapid detection of vincristine (VCR). The RGO‐Au composite membrane was obtained via direct one‐step electrodeposition technique of graphene oxide (GO) and chloroauric acid (HAuCl4) on the surface of a glassy carbon electrode (GCE) by means of cyclic voltammetry (CV) in the potential range between ?1.5 and 0.6 V in phosphate buffer solution (PBS) of pH 9.18, which is capable of effectively utilizing its superior electrical conductivity, larger specific surface area due to its synergistic effect between RGO and Au. The molecularly imprinted polymers (MIPs) were synthesized on the RGO‐Au modified glassy carbon electrode surface with VCR as the template molecular, methyl acrylic acid (MAA) as the functional monomer, and ethylene glycol maleic rosinate acrylate (EGMRA) as a cross‐linker. The performance of the sensor was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) in detail. Under the optimum conditions, the fabricated sensor exhibited a linear relationship between oxidation peak current and VCR concentration over the range of 5.0×10?8–5.0×10?6 mol·L minus;1 with a correlation coefficient of 0.9952 and a detection limit (S/N=3) of 2.6×10minus;8 mol·Lminus;1. The results indicated that the imprinted polymer films exhibited an excellent selectivity for VCR. The imprinted sensor was successfully used to determine VCR in real samples with recoveries of 90% –120% by using the standard addition method.  相似文献   

19.
《Electroanalysis》2017,29(5):1214-1221
A highly sensitive enzymeless electrochemical glucose sensor has been developed based on the simply prepared cathodized gold nanoparticle‐modified graphite pencil electrode (AuNP‐GPE). Cyclic voltammetry (CV) experiments show that AuNP‐GPE is able to oxidize glucose partially at low potential (around −0.27) whereas the bare GPE cannot oxidize glucose in the entire tested potential windows. Besides, fructose and sucrose cannot be oxidized at potential lower than +0.1 V at AuNP‐GPE. As a result, the glucose oxidation peak at around −0.27 V is suitable enough for selective detection of glucose in the presence of fructose and sucrose. Cathodization of AuNP‐GPE under optimum condition (‐1.0 V for 30 s) in the same glucose solution before voltammetric measurement enhanced glucose oxidation peak current around −0.27 V to achieve an efficient electrochemical sensor for glucose with a detection limit of 12 μM and dynamic range between 0.05 to 5.0 mM with a good linearity (R2= 0.999). Almost no interference effect was observed for sensing of glucose in the presence of ascorbic acid, alanine, phenylalanine, fructose, sucrose, and NaCl.  相似文献   

20.
A pencil graphite electrode (PGE) electrodeposited by a polypyrrole conducting polymer doped with tartrazine (termed as PGE/PPy/Tar) was prepared and used as a zinc (II) solid-state ion-selective electrode. For the preparation of the zinc sensor electrode, electrodeposition of a polypyrrole nanofilm was carried out potentiostatically (E app?=?0.75 V vs SCE) in a solution containing 0.010 M pyrrole and 0.001 M tartrazine trisodium salt. A pencil graphite and Pt wire were used as working and auxiliary electrodes, respectively. The introduced electrode in the current paper can be fabricated simply and was found to possess high selectivity, exhibited wide working concentration range, sufficiently rapid response, potential stability, and very good sensitivity to Zn (II) ion. The sensor electrode showed a linear Nernstian response over the range of 1.0?×?10?5 to 1.0?×?10?1 M with a slope of 28.23 mV per decade change in zinc ion concentration. A detection limit of 8.0?×?10?6 M was obtained. The optimum pH working of the electrode was found to be 5.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号