首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Pure tone intensity discrimination thresholds can be elevated by the introduction of remote maskers with roved level. This effect is on the order of 10 dB [10 log(DeltaII)] in some conditions and can be demonstrated under conditions of little or no energetic masking. The current study examined the effect of practice and observer strategy on this phenomenon. Experiment 1 included observers who had no formal experience with intensity discrimination and provided training over 6 h on a single masked intensity discrimination task to assess learning effects. Thresholds fell with practice for most observers, with significant improvements in six out of eight cases. Despite these improvements significant masking remained in all cases. The second experiment assessed trial-by-trial effects of roved masker level. Conditional probability of a "signal-present" response as a function of the rove value assigned to each of the two masker tones indicates fundamental differences among observers' processing strategies, even after 6 h of practice. The variability in error patterns across practiced listeners suggests that observers approach the task differently, though this variability does not appear to be related to sensitivity.  相似文献   

2.
Thresholds for the detection of harmonic complex tones in noise were measured as a function of masker level. The rms level of the masker ranged from 40 to 70 dB SPL in 10-dB steps. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz, and components were added in either cosine or random phase. The complex tones and the noise were bandpass filtered into the same frequency region, from the tenth harmonic up to 5 kHz. In a different condition, the roles of masker and signal were reversed, keeping all other parameters the same; subjects had to detect the noise in the presence of a harmonic tone masker. In both conditions, the masker was either gated synchronously with the 700-ms signal, or it started 400 ms before and stopped 200 ms after the signal. The results showed a large asymmetry in the effectiveness of masking between the tones and noise. Even though signal and masker had the same bandwidth, the noise was a more effective masker than the complex tone. The degree of asymmetry depended on F0, component phase, and the level of the masker. The maximum difference between masked thresholds for tone and noise was about 28 dB; this occurred when the F0 was 62.5 Hz, the components were in cosine phase, and the masker level was 70 dB SPL. In most conditions, the growth-of-masking functions had slopes close to 1 (on a dB versus dB scale). However, for the cosine-phase tone masker with an F0 of 62.5 Hz, a 10-dB increase in masker level led to an increase in masked threshold of the noise of only 3.7 dB, on average. We suggest that the results for this condition are strongly affected by the active mechanism in the cochlea.  相似文献   

3.
Canahl [J. Acoust. Soc. Am. 50, 471-474 (1971)] measured thresholds for a 1.0-kHz sinusoid masked either by two or by four surrounding tones. He reported four-tone masked thresholds that exceeded, by 5-7.5 dB, the energy sum of the masking produced by the individual tone pairs. The present paper reports on a series of experiments investigating the effects of several factors on this 5-7.5 dB "excess" masking. In each experiment, thresholds for a 1.0-kHz 250-ms sinusoid were measured as a function of the overall level of two or four equal amplitude sinusoids with frequencies arithmetically centered around 1.0 kHz. For conditions similar to those of the Canahl experiment, 5-6 dB of excess masking was obtained independent of the level of the masking tones. Randomly varying overall level across presentations had no effect on the excess masking. The excess masking was reduced or eliminated when the masking tones were generated using an amplitude modulation technique, when they were gated on and off with the signal, or when their waveshapes were fixed across trials. Canahl's result may reflect listeners' ability to detect the signal as a change in the waveshape of the multitone masker.  相似文献   

4.
Three experiments were conducted to determine whether listeners with a sensorineural hearing loss exhibited greater than normal amounts of masking at frequencies above the frequency of the masker. Excess masking was defined as the difference (in dB) between the masked thresholds actually obtained from a hearing-impaired listener and the expected thresholds calculated for the same individual. The expected thresholds were the power sum of the listener's thresholds in quiet and the average masked thresholds obtained from a group of normal-hearing subjects at the test frequency. Hearing-impaired listeners, with thresholds in quiet ranging from approximately 35-70 dB SPL (at test frequencies between 500-3000 Hz), displayed approximately 12-15 dB of maximum excess masking. The maximum amount of excess masking occurred in the region where the threshold in quiet of the hearing-impaired listener and the average normal masked threshold were equal. These findings indicate that listeners with a sensorineural hearing loss display one form of reduced frequency selectivity (i.e., abnormal upward spread of masking) even when their thresholds in quiet are taken into account.  相似文献   

5.
The evoked acoustic potentials of the brainstem (EAPB) were detected from the brain, the skull, and the surface of the head of the harbor porpoise (Phocaena phocaena). Experiments were performed at the Karadag biological station (Crimea). Clicks, noise, and tone bursts of different frequencies within 80–190 kHz were used as stimuli. The time and frequency selectivities of the auditory system were estimated by the simultaneous and direct forward masking methods. The minima of EAPB thresholds were usually observed in a frequency range of 120–140 kHz, which corresponded to the main spectral maximum of the species-specific echolocation signal. In addition to the regular EAPB, a pronounced off-EAPB was observed. In the aforementioned frequency range, a frequency selectivity (Q10 of about 10) was revealed by the direct forward masking method. The EAPB could be measured up to a frequency of 190 kHz, but outside this high-resolution region (outside the ultrasonic “fovea”), the frequency selectivity was weak. A simultaneous masking of a click by a tone was strong only when the delay of the click with respect to the masker onset was smaller than 1.0 ms. In a continuous regime, the tone (unlike noise) produced only a weak masking. The response to a small intensity increment of 1–4 dB was rather strong. In the frequency range of 120–140 kHz, this response exhibited a nonmonotone dependence on the signal level. The time resolving power, which was measured by the EAPB recovery functions for double clicks of various levels, was rather high, even when the intensity of the test signal was 18 dB lower than the masker level. Experimental data show that the auditory system of the harbor porpoise is tuned to detecting ultrasonic echo signals in the frequency range within 120–140 kHz. A hypothesis is put forward that the acoustic system of the harbor porpoise allows the animal, from analyzing echo signals, to estimate not only the distance to the target and the target’s intrinsic properties but also the speed with which the target is approached, the latter estimate being presumably obtained on the basis of the Doppler effect.  相似文献   

6.
Release from masking caused by envelope fluctuations   总被引:1,自引:0,他引:1  
This paper examines how short-term energy fluctuations in a masker affect the thresholds for tones at frequencies above those of the masker. Two equally intense tones at 1060 and 1075 Hz produce up to 25 dB less masking than does a 1075-Hz tone set to the overall level of the two-tone complex. At wider frequency separations, two-tone complexes also produce less masking than the pure tone. These results indicate that envelope fluctuations in a masker, whose spectrum is confined to a single critical band, may result in release from masking. The release from masking probably is related to the comodulation masking release reported by Hall et al. [J. Acoust. Soc. Am. 76, 50-56 (1984b)] for modulated-noise maskers with bandwidths greater than one critical band. Further measurements with maskers, whose intensity level in the critical band around 1 kHz was 90 dB SPL, show similar masking by a pure tone and a 625- to 1075-Hz bandpass noise, but less masking by narrow-band noises. These results are inconsistent with a simple frequency selective energy-detector model and indicate that the auditory system can use periods of low masker energy as brief as a few ms to enhance detection of a tone. The results also imply that the upward spread of excitation is best represented by masking patterns for noises with bandwidths of several critical bands.  相似文献   

7.
The potential for interactions between steady-state evoked responses to simultaneous auditory stimuli was investigated in two bottlenose dolphins (Tursiops truncatus). Three experiments were conducted using either a probe stimulus (probe condition) or a probe in the presence of a masker (probe-plus-masker condition). In the first experiment, the probe and masker were sinusoidal amplitude-modulated (SAM) tones. Probe and masker frequencies and masker level were manipulated to provide variable masking conditions. Probe frequencies were 31.7, 63.5, 100.8, and 127.0 kHz. The second experiment was identical to the first except only the 63.5 kHz probe was used and maskers were pure tones. For the third experiment, thresholds were measured for the probe and probe-plus-masker conditions using two techniques, one based on the lowest detectable response and the other based on a regression analysis. Results demonstrated localized masking effects where lower frequency maskers suppressed higher frequency probes and higher amplitude maskers produced a greater masking effect. The pattern of pure tone masking was nearly identical to SAM tone masking. The two threshold estimates were similar in low masking conditions, but in high masking conditions the lowest detectable response tended to overestimate thresholds while the regression-based analysis tended to underestimate thresholds.  相似文献   

8.
In most masking experiments, target signals and sound intended to mask are located in the same position. Spatial release from masking (SRM) occurs when signals and maskers are spatially separated, resulting in detection improvement relative to when they are spatially co-located. In this study, SRM was investigated in a harbor seal, who naturally lacks pinnae, and California sea lion, who possesses reduced pinnae. Subjects had to detect aerial tones at 1, 8, and 16 kHz in the presence of octave bands of white noise centered at the tone frequency. While the masker occurred in front of the subject (0 degree), the tone occurred at 0, 45, or 90 degrees in the horizontal plane. Unmasked thresholds were also measured at these angles to determine sensitivity differences based on source azimuth. Compared to when signal and masker where co-located, masked thresholds were lower by as much as 19 and 12 dB in the harbor seal and sea lion, respectively, when signal and masker were separated. Masked threshold differences of the harbor seal were larger than those previously measured under water. Performance was consistent with some measurements collected on terrestrial animals but differences between subjects at the highest frequency likely reflect variations in pinna anatomy.  相似文献   

9.
The present study examined the relative influence of the off- and on-frequency spectral components of modulated and unmodulated maskers on consonant recognition. Stimuli were divided into 30 contiguous equivalent rectangular bandwidths. The temporal fine structure (TFS) in each "target" band was either left intact or replaced with tones using vocoder processing. Recognition scores for 10, 15 and 20 target bands randomly located in frequency were obtained in quiet and in the presence of all 30 masker bands, only the off-frequency masker bands, or only the on-frequency masker bands. The amount of masking produced by the on-frequency bands was generally comparable to that produced by the broadband masker. However, the difference between these two conditions was often significant, indicating an influence of the off-frequency masker bands, likely through modulation interference or spectral restoration. Although vocoder processing systematically lead to poorer consonant recognition scores, the deficit observed in noise could often be attributed to that observed in quiet. These data indicate that (i) speech recognition is affected by the off-frequency components of the background and (ii) the nature of the target TFS does not systematically affect speech recognition in noise, especially when energetic masking and/or the number of target bands is limited.  相似文献   

10.
Forward-masking growth functions for on-frequency (6-kHz) and off-frequency (3-kHz) sinusoidal maskers were measured in quiet and in a high-pass noise just above the 6-kHz probe frequency. The data show that estimates of response-growth rates obtained from those functions in quiet, which have been used to infer cochlear compression, are strongly dependent on the spread of probe excitation toward higher frequency regions. Therefore, an alternative procedure for measuring response-growth rates was proposed, one that employs a fixed low-level probe and avoids level-dependent spread of probe excitation. Fixed-probe-level temporal masking curves (TMCs) were obtained from normal-hearing listeners at a test frequency of 1 kHz, where the short 1-kHz probe was fixed in level at about 10 dB SL. The level of the preceding forward masker was adjusted to obtain masked threshold as a function of the time delay between masker and probe. The TMCs were obtained for an on-frequency masker (1 kHz) and for other maskers with frequencies both below and above the probe frequency. From these measurements, input/output response-growth curves were derived for individual ears. Response-growth slopes varied from >1.0 at low masker levels to <0.2 at mid masker levels. In three subjects, response growth increased again at high masker levels (>80 dB SPL). For the fixed-level probe, the TMC slopes changed very little in the presence of a high-pass noise masking upward spread of probe excitation. A greater effect on the TMCs was observed when a high-frequency cueing tone was used with the masking tone. In both cases, however, the net effects on the estimated rate of response growth were minimal.  相似文献   

11.
Detection was measured for a 500 Hz tone masked by noise (an "energetic" masker) or sets of ten randomly drawn tones (an "informational" masker). Presenting the maskers diotically and the target tone with a variety of interaural differences (interaural amplitude ratios and/or interaural time delays) resulted in reduced detection thresholds relative to when the target was presented diotically ("binaural release from masking"). Thresholds observed when time and amplitude differences applied to the target were "reinforcing" (favored the same ear, resulting in a lateralized position for the target) were not significantly different from thresholds obtained when differences were "opposing" (favored opposite ears, resulting in a centered position for the target). This irrelevance of differences in the perceived location of the target is a classic result for energetic maskers but had not previously been shown for informational maskers. However, this parallellism between the patterns of binaural release for energetic and informational maskers was not accompanied by high correlations between the patterns for individual listeners, supporting the idea that the mechanisms for binaural release from energetic and informational masking are fundamentally different.  相似文献   

12.
The overshoot effect can be reduced by temporary hearing loss induced by aspirin or exposure to intense sound. The present study simulated a hearing loss at 4.0 kHz via pure-tone forward masking and examined the effect of the simulation on threshold for a 10-ms, 4.0-kHz signal presented 1 ms after the onset of a 400-ms, broadband noise masker whose spectrum level was 20 dB SPL. Masker frequency was 3.6, 4.0, or 4.2 kHz, and masker level was 80 dB SPL. Subject-dependent delays were determined such that 10 or 20 dB of masking at 4.0 kHz was produced. In general, the pure-tone forward masker did not reduce the simultaneous-masked threshold, suggesting that elevating threshold with a pure-tone forward masker does not sufficiently simulate the effect of a temporary hearing loss on overshoot.  相似文献   

13.
Gap detection and masking in hearing-impaired and normal-hearing subjects   总被引:7,自引:0,他引:7  
Subjects with cochlear impairments often show reduced temporal resolution as measured in gap-detection tasks. The primary goals of these experiments were: to assess the extent to which the enlarged gap thresholds can be explained by elevations in absolute threshold; and to determine whether the large gap thresholds can be explained by the same processes that lead to a slower-than-normal recovery from forward masking. In experiment I gap thresholds were measured for nine unilaterally and eight bilaterally impaired subjects, using bandlimited noise stimuli centered at 0.5, 1.0, and 2.0 kHz. Gap thresholds were usually larger for the impaired ears, even when the comparisons were made at equal sensation levels (SLs). Gap thresholds tended to increase with increasing absolute threshold, but the scatter of gap thresholds was large for a given degree of hearing loss. In experiment II threshold was measured as a function of the delay between the onset of a 210-ms masker and the onset of a 10-ms signal in both simultaneous- and forward-masking conditions. The signal frequency was equal to the center frequency of the bandlimited noise masker, which was 0.5, 1.0, or 2.0 kHz. Five subjects with unilateral cochlear impairments, two subjects with bilateral impairments, and two normal subjects were tested. The rate of recovery from forward masking, particularly the initial rate, was usually slower for the impaired ears, even when the maskers were presented at equal SLs. Large gap thresholds tended to be associated with slow rates of recovery from forward masking.  相似文献   

14.
Howard-Jones and Rosen [(1993). J. Acoust. Soc. Am. 93, 2915-2922] investigated the ability to integrate glimpses of speech that are separated in time and frequency using a "checkerboard" masker, with asynchronous amplitude modulation (AM) across frequency. Asynchronous glimpsing was demonstrated only for spectrally wide frequency bands. It is possible that the reduced evidence of spectro-temporal integration with narrower bands was due to spread of masking at the periphery. The present study tested this hypothesis with a dichotic condition, in which the even- and odd-numbered bands of the target speech and asynchronous AM masker were presented to opposite ears, minimizing the deleterious effects of masking spread. For closed-set consonant recognition, thresholds were 5.1-8.5?dB better for dichotic than for monotic asynchronous AM conditions. Results were similar for closed-set word recognition, but for open-set word recognition the benefit of dichotic presentation was more modest and level dependent, consistent with the effects of spread of masking being level dependent. There was greater evidence of asynchronous glimpsing in the open-set than closed-set tasks. Presenting stimuli dichotically supported asynchronous glimpsing with narrower frequency bands than previously shown, though the magnitude of glimpsing was reduced for narrower bandwidths even in some dichotic conditions.  相似文献   

15.
Western Atlantic sciaenids comprise a taxonomically diverse teleost family with significant variations in the relationship between the swim bladder and the otic capsule. In this study, the auditory brainstem response (ABR) was used to test the hypothesis that fishes with different peripheral auditory structures (black drum, Pogonias chromis and Atlantic croaker, Micropogonias undulatus) show differences in frequency selectivity. In a black drum the swim bladder is relatively distant from the otic capsule while the swim bladder in Atlantic croaker possesses anteriorly-directed diverticulas that terminate relatively near the otic capsule. Signals were pure tones in the frequency range, 100 Hz to 1.5 kHz, and thresholds were determined both with and without the presence of simultaneous white noise at two intensity levels (124 dB and 136 dB, re: 1 microPa). At the 124 dB level of white noise background, both the black drum and Atlantic croaker showed similar changes in auditory sensitivity. However, in the presence of the 136 dB white noise masker, black drum showed significantly greater shifts in auditory thresholds between 300 and 600 Hz. The results indicate that the two species differ in frequency selectivity since the Atlantic croaker was less susceptible to auditory threshold shifts, particularly at the higher level of masking. This difference may be linked to peripheral auditory mechanisms.  相似文献   

16.
The thresholds of masking of short high-frequency pulses with either different durations (1.25–25 ms) and similar central frequency or different central frequencies (3.6–4.4 kHz) but similar durations were measured to reveal manifestations of the properties of peripheral encoding in auditory perception. Noises with a spiked amplitude spectrum structure were used as maskers. The central frequency and the frequency band of a masker were 4 and 1 kHz, respectively. The central frequencies of a stimulus and a masker being equal, the noise the central frequency of which coincided with the frequency corresponding to a dip of an indented spectrum was called an off(rip)-frequency masker. Owing to the off(rip)-masker, stimuli-induced masking thresholds were formed taking into account excitation in a narrow region of a basila membrane and auditory nerve fibers with characteristic frequencies from a narrow range. High-frequency pulses with an envelope in the form of the Gaussian function and sinusoidal filling were used as stimuli. At masker levels of 30 dB above the auditory threshold, frequencies of off(rip)-masker spectra spikes of 500–2000 Hz, and a central stimulus frequency of 4 kHz, the thresholds of tonal stimuli (25 ms in duration) masking in two out of three probationers were higher than the thresholds of masking of compact stimuli (1.25 ms in duration). In the third probationer, on the contrary, the thresholds of tonal stimuli masking were lower than the thresholds of compact stimuli masking. At masker levels of 50 dB, individual threshold differences disappeared. The obtained results were interpreted in the context of implementation of different methods of auditory encoding of the intensity. The methods were based on either the average frequency of auditory nerve pulsations or the number of fibers participating in the response. The interpretation was also carried out in the context of revealing manifestations of nonlinear properties of basila membrane displacements in auditory thresholds. The fact that the dependence of detection thresholds of compact stimuli on their central frequency in one of the two probationers did not reveal the minimum in case of coincidence of off(rip)-masker and stimulus frequencies pointed to the presence of an auditory “problem zone” that was likely to be localized at the periphery of the auditory system.  相似文献   

17.
Detection and intensity discrimination of a sinusoid   总被引:1,自引:0,他引:1  
Intensity discrimination thresholds were measured for gated 100-ms, 1000-Hz tones. Discrimination thresholds were measured at several intensities near absolute threshold as well as at 30, 60, and 90 dB SPL. Psychometric functions were obtained for several of these discrimination conditions, and for detection of the signal in quiet. The results showed that Weber's law is approximately valid for standards as low as 0 dB SL. Small amounts of negative masking were observed even when the data were expressed in terms of increment energy. The psychometric functions for the discrimination conditions had a similar form and were shallower than the psychometric function for the detection of a signal in quiet. A similar set of conditions was run in the presence of a continuous, broadband noise. The results were generally in agreement with those obtained in quiet, but slight differences suggested that the variability which limits performance in the two conditions is different. The results are discussed in terms of the effects of nonlinear transduction, the effects of uncertainty, and contrast mechanisms as proposed by Laming [Sensory Analysis (Academic, London, 1986)].  相似文献   

18.
To assess temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking, absolute thresholds for tones were measured as a function of duration. Durations ranged from 500 ms down to 15 ms at 0.25 kHz, 8 ms at 1 kHz, and 2 ms at 4 and 14 kHz. An adaptive 2I, 2AFC procedure with feedback was used. On each trial, two 500-ms observation intervals, marked by lights, were presented with an interstimulus interval of 250 ms. The monaural signal was presented in the temporal center of one observation interval. The results for five normal and six impaired listeners show: (1) normal listeners' thresholds decrease by about 8 to 10 dB per decade of duration, as expected; (2) listeners with cochlear impairments generally show less temporal integration than normal listeners; and (3) listeners with impairments simulated using masking noise generally show the same amount of temporal integration as normal listeners tested in the quiet. The difference between real and simulated impairments indicates that the reduced temporal integration observed in impaired listeners probably is not due to splatter of energy to frequency regions where thresholds are low, but reflects reduced temporal integration per se.  相似文献   

19.
Although most recent multitalker research has emphasized the importance of binaural cues, monaural cues can play an equally important role in the perception of multiple simultaneous speech signals. In this experiment, the intelligibility of a target phrase masked by a single competing masker phrase was measured as a function of signal-to-noise ratio (SNR) with same-talker, same-sex, and different-sex target and masker voices. The results indicate that informational masking, rather than energetic masking, dominated performance in this experiment. The amount of masking was highly dependent on the similarity of the target and masker voices: performance was best when different-sex talkers were used and worst when the same talker was used for target and masker. Performance did not, however, improve monotonically with increasing SNR. Intelligibility generally plateaued at SNRs below 0 dB and, in some cases, intensity differences between the target and masking voices produced substantial improvements in performance with decreasing SNR. The results indicate that informational and energetic masking play substantially different roles in the perception of competing speech messages.  相似文献   

20.
Forward- and simultaneous-masked thresholds were measured at 0.5 and 2.0 kHz in bandpass maskers as a function of masker bandwidth and in a broadband masker with the goal of estimating psychophysical suppression. Suppression was operationally defined in two ways: (1) as a change in forward-masked threshold as a function of masker bandwidth, and (2) as a change in effective masker level with increased masker bandwidth, taking into account the nonlinear growth of forward masking. Subjects were younger adults with normal hearing and older adults with cochlear hearing loss. Thresholds decreased as a function of masker bandwidth in forward masking, which was attributed to effects of suppression; thresholds remained constant or increased slightly with increasing masker bandwidth in simultaneous masking. For subjects with normal hearing, slightly larger estimates of suppression were obtained at 2.0 kHz rather than at 0.5 kHz. For hearing-impaired subjects, suppression was reduced in regions of hearing loss. The magnitude of suppression was strongly correlated with the absolute threshold at the signal frequency, but did not vary with thresholds at frequencies remote from the signal. The results suggest that measuring forward-masked thresholds in bandlimited and broadband maskers may be an efficient psychophysical method for estimating suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号