首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoporous layered silicate materials contain 2D-planar sheets of nanoscopic thickness and ordered porous structure. In comparison to porous 3D-framework materials such as zeolites, they have advantages such as significantly increased surface area and decreased diffusion limitations because the layers can potentially be exfoliated or intercalated into polymers to form nanocomposite materials. These properties are particularly interesting for applications as materials for enhancing molecular selectivity and throughput in composite membranes. In this report, the swelling and surface modification chemistry of two attractive nanoporous layered silicate materials, AMH-3 and MCM-22, were studied. We first describe a method, using long-chain diamines instead of monoamines, for swelling of AMH-3 while preserving its pore structure to a greater extent during the swelling process. Then, we describe a stepwise functionalization method for functionalizing the layer surfaces of AMH-3 and MCM-22 via silane condensation reactions. The covalently attached hydrocarbon chain molecules increased the hydrophobicity of AMH-3 and MCM-22 layer surfaces and therefore allow the possibility of effectively dispersing these materials in polymer matrices for thin film/membrane applications.  相似文献   

2.
3.
以层状MCM-22P为前驱体,四甲基铵硅酸盐为柱化剂,采用动态水热法考察了MCM-36分子筛的合成条件,并通过XRD、N2物理吸附、TEM、27Al-MAS NMR以及NH3-TPD等手段对合成分子筛进行了表征。结果表明,与传统的采用正硅酸乙酯为柱化剂的柱化过程相比,以四甲基铵硅酸盐为柱化剂时,已溶胀的前驱体不经干燥处理即可直接在含水体系进行柱化插层合成得到层间距均一的层柱状MCM-36分子筛,适宜的合成条件为:先在80℃的高pH值(约13.5)环境下对前驱体溶胀24 h,然后在100℃下柱化插层24 h。表征结果表明,MCM-36分子筛具有层内微孔和层间介孔的复合孔道结构以及较大的比表面积(特别是外比表面积);与HMCM-22相比,HMCM-36的表面酸性虽明显降低,但其层间介孔结构的形成使大量B酸中心暴露于大分子易于接近的层间介孔孔壁,可为涉及较大分子的催化反应提供更多可接近的活性位中心。  相似文献   

4.
The swelling of poly(TRIM) spherical particles in TEOS is assessed as a potential way for obtaining polymer-silica nanocomposite materials. Silica deposition was achieved by simply stirring of swollen polymer particles in acidic hydrochloric-water solution. This procedure leads to spherical composite particles with dispersed silica gel within the polymer matrix. The resulting material exhibits the same morphology as the initial polymer. Nanocomposite particles are silica rich (about 17 wt.%). Characterization of the nanocomposites was performed using scanning electron microscopy, FT-IR spectroscopy, (29)Si CP MAS NMR spectroscopy and thermogravimetry. Moreover, the use of positron annihilation lifetime spectroscopy PALS to characterize the structural properties of the nanocomposites is presented. This technique gave more realistic pieces of information about the pore structure of the investigated samples in contrast to nitrogen adsorption studies.  相似文献   

5.
Intercalated and exfoliated models of polymer nanocomposites based on poly(epsilon-caprolactone) and functionalized montmorillonite clay are studied by means of molecular dynamics simulations. Intercalated and exfoliated models are considered for probing the structural characteristics of the corresponding nanocomposites prepared by melt intercalation and in situ polymerization, respectively. In the exfoliated system, the organization of the polymer chains onto the clay surface is examined in terms of the density profiles and the order parameter function. A layered structure can clearly be seen to form near the surface with density maxima higher than in amorphous poly(epsilon-caprolactone). This can be viewed as an increase in effective particle thickness, which can contribute to the outstanding gas barrier properties of the exfoliated nanocomposites. The comparison of the structures and energetics of the intercalated model with those of a nanocomposite model based on a nonfunctionalized clay indicates nearly similar characteristics. Nevertheless, the slight differences observed for the interfacial polymer density and clay- and surfactant-polymer binding energies can account for the differences in rheological measurements. The results also suggest that the difference in morphology obtained for the nanocomposites prepared by the two synthetic approaches can be ascribed to both a difference in interfacial polymer density and the formation of bridging polymer chain structures that hinder the exfoliation process.  相似文献   

6.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

7.
The amphiphilic poly(methyl methacrylate-block-2-(dimethylamino)ethyl methacrylate) (PMMA-b-PDMAEMA) block copolymer brushes on the surface of clay layers were synthesized by in situ atom transfer radical polymerization. X-ray diffraction results indicate that both exfoliated and intercalated structure can be found in the nanocomposites. The block copolymer brushes can make different nanopatterns on the surface of clay layers after treatment in different solvents. After treatment in tetrahydrofuran block copolymer brushes form lamella structure on the surface, and after treatment in water surface micelles and wormlike structure can be observed. PMMA colloid particles armored by clay nanocomposites were prepared by suspension polymerization. Transmission electron microscopy and scanning electron microscopy were used to characterize the structure and morphology of the colloid particles. Colloid particles with clay layers around the surface can be observed. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface of the colloid particles. N1s binding energy of PDMAEMA blocks on the surface of clay layers was detected by XPS. The two peaks of the N1s binding energy indicate two different nitrogen environments on the surface of clay layers. The peak with a lower binding energy is characteristic of neutral nitrogen on PDMAEMA blocks, and the peak with a higher binding energy is attributed to protonated nitrogen on PDMAEMA blocks.  相似文献   

8.
A well‐exfoliated morphology is usually observed for polar polymer/clay nanocomposites via dynamic melt processing techniques, whereas only an intercalated or a partially intercalated/partially exfoliated morphology is often obtained for nonpolar polymer/clay nanocomposites, even though some polar compatibilzer is used. In this study, an accelerated exfoliation effect was observed for the first time in iPP/organoclay nanocomposites prepared through so‐called dynamic packing injection molding, in which the specimen is forced to move repeatedly in a chamber by two pistons that move reversibly with the same frequency as the solidification progressively occurs from the mold wall to the molding core part. The disordered level and exfoliated degree of clay was found to dramatically increase from the skin to the core of the prepared samples and eventually the WAXD reflections of interlayer d‐spacing diminished in the core. The changed degree of exfoliation was also proved directly by TEM observation. The prolongation of processing time, the gradual growth of solidification front, the increased melts viscosity, and the shear amplification effect were considered to explain the higher degree of exfoliation in the center zone of mold chamber. Our result suggests that a critical shear force may be needed to break down clay into exfoliated structure. This can be also well used to explain at least partially the intercalated morphology, which is commonly observed for nonpolar polymer/clay nanocomposites via conventional processing. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2005–2012, 2005  相似文献   

9.
Nanocomposites are the emerging materials of the 21st century in view of their possessing design uniqueness without any compromises, certain unusual property combinations that are not found in conventional composites, as well as a wide spectrum of applications. Polymer-based layered compound nanocomposites have special place in view of their best property enhancement. Hence, the objective of this article is to bring new ideas to optimize the design of polymer/layered compounds/fibrous nanocomposites, starting with a brief overview of the preparation, structure, properties and applications. The proposed strategy suggests the use of synthetic and natural layered compounds, taking into account their ability to be exfoliated in the form of single layers, which can be chemically grafted with key molecules. The same procedure can also be applied to fibrous materials. These surface-grafted molecules can carry reactive groups to be bonded to the polymer matrices. Thus adhesion between the reinforcement and the polymer matrix can be achieved. This methodology, which has not been explored systematically in the specialized literature, can be used to produce polymer nanocomposites with low-cost fibrous materials having similarity to expensive carbon nanotubes exhibiting optimized dispersion, interfacial bonding, and attractive physical and other properties.  相似文献   

10.
In this study, the solid-state shear pan-milling was employed to prepare a series of polymer/layered silicate (PLS) nanocomposites. During the process of pan-milling at ambient temperature, poly(vinyl alcohol)/organic montmorillonite (PVA/OMMT) can be effectively pulverized, resulting in coexistence of intercalated and exfoliated OMMT layers. The obtained PLS nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM analysis indicated that OMMT dispersed homogeneously in PVA matrix and XRD results illustrated that pan-milling had an obvious effect on increase in the interlayer spacing of OMMT, and resulted in coexistence of intercalated and exfoliated OMMT layers formed. Thermal gravimetric analysis showed that thermal stability of PVA was improved owing to the incorporation of OMMT. Thermal decomposition kinetics of PVA/OMMT nanocomposites with different milling cycles of OMMT was also studied. Two types of OMMT are chosen to compare the effect of hydrophilicity of OMMT on PVA/OMMT nanocomposites.  相似文献   

11.
A detailed study about the synthesis, characterization and properties of poly(o-methylaniline)(PoMea)/maghnite nanocomposites has been performed. Changes in the characteristics of the nanocomposites, depending on the intercalated cation between the clay layers before the synthesis, have been observed. Intercalated morphology has been detected by TEM in nanocomposites containing copper-treated maghnite (Magh-Cu), while when maghnite treated with strong acids was used (Magh-H); an exfoliated material has been obtained. Also, remarkable differences in the properties of the polymers have been observed by TG-MS and FTIR, suggesting that the polymer produced with Magh-H has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry. Good electrochemical response has been observed for PoMea grown into Magh-Cu but not for the one polymerized into Magh-H.  相似文献   

12.
This study describes the mechanism of flammability reduction in flame-retarded polymer matrix organo-montmorillonite reinforced nanocomposites. Morphologies of untested polymer nanocomposites and char residues formed by combustion in the mass loss calorimeter are characterized by XRD and TEM techniques. It is postulated that a combination of well-dispersed montmorillonite platelets and flame retardants in the polymer matrix provides nano-structured char formation. Initial montmorillonite dispersion in flame-retarded nanocomposites is found to be a major controlling factor on formed char nanostructures. An initially intercalated structure is invariantly converted to complete montmorillonite collapse whereas an initially exfoliated structure transforms to nano-structured chars demonstrating retained exfoliation or a new state of intercalation via incomplete collapse of montmorillonite layers. It is proposed that nano-structured char formation is the effective mechanism of flammability reduction, i.e. reduction in rate of heat release during combustion, in flame-retarded polymer nanocomposites.  相似文献   

13.
For the improved dispersion of montmorillonite (MMT) in a polypropylene (PP) matrix, PP/MMT nanocomposites prepared via direct melt intercalation were further subjected to oscillating stress achieved by dynamic packing injection molding. The shear‐induced morphological changes were investigated with an Instron machine, wide‐angle X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The original nanocomposites possessed a partly intercalated and partly exfoliated morphology. A transformation of the intercalated structure into an exfoliated structure occurred after shearing, and a more homogeneous dispersion of MMT in the PP matrix was obtained. However, the increase of the exfoliated structure was accompanied by the scarifying of the orientation of MMT layers along the shear direction. Some bended or curved MMT layers were found for the first time by TEM after shearing. However, the orientation of PP chains in the PP/MMT nanocomposites became very difficult under an external shear force; this indicated that the molecular motion of PP chains intercalated between MMT layers was highly confined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1–10, 2003  相似文献   

14.
A detailed study of the role of solution pH and ionic strength on the swelling behavior of capsules composed of the weak polyelectrolytes poly(4-vinylpyridine) (P4VP) and poly(methacrylic acid) (PMA) with different numbers of layers was carried out. The polyelectrolyte layers were assembled onto silicon oxide particles and multilayer formation was followed by zeta-potential measurements. Hollow capsules were investigated by scanning electron microscopy and atomic force microscopy. The pH-dependent behavior of P4VP/PMA capsules was probed in aqueous media using confocal laser scanning microscopy. All systems exhibited a pronounced swelling at the edges of stability, at pHs of 2 and 8.1. The swelling degree increased when more polymer material was adsorbed. The swollen state can be attributed to uncompensated positive and negative charges within the multilayers, and it is stabilized by counteracting hydrophobic interactions. The swelling was related to the electrostatic interactions by infrared spectroscopy and zeta-potential measurements. The stability of the capsules as well as the swelling degree at a given pH could be tuned, when the ionic strength of the medium was altered.  相似文献   

15.
Poly(epsilon-caprolactone)/clay nanocomposites via “click” chemistry   总被引:1,自引:0,他引:1  
Poly(epsilon-caprolactone)/clay nanocomposites were prepared by copper(I) catalyzed azide/alkyne cycloaddition (CuAAC) “click” reaction. In this method, ring-opening polymerization of epsilon-caprolactone using propargyl alcohol as the initiator has been performed to produce alkyne-functionalized PCL and the obtained polymers were subsequently attached to azide-modified clay layers by a CuAAC “click” reaction. The exfoliated polymer/clay nanocomposites were characterized by X-ray diffraction spectroscopy, thermogravimetric analysis and transmission electron microscopy.  相似文献   

16.
The feasibility of constructing polymer/clay nanocomposites with polypeptides as the matrix material is shown. Cationic poly‐L‐lysine · HBr (PLL) was reinforced by sodium montmorillonite clay. The PLL/clay nanocomposites were made via the solution‐intercalation film‐casting technique. X‐ray diffraction and transmission electron microscopy data indicated that montmorillonite layers intercalated with PLL chains coexist with exfoliated layers over a wide range of relative PLL/clay compositions. Differential scanning calorimetry suggests that the presence of clay suppresses crystal formation in PLL relative to the neat polypeptide and slightly decreases the PLL melting temperature. Despite lower crystallinity, dynamic mechanical analysis revealed a significant increase in the storage modulus of PLL with an increase in clay loading producing storage modulus magnitudes on par with traditional engineering thermoplastics. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2579–2586, 2002  相似文献   

17.
High‐density polyethylene/clay nanocomposites were elongated until breakage to investigate the effect of the mechanical stretching on the crystal‐to‐crystal transformations and their morphology. Crystalline transformations of the polymer matrix were studied via Fourier transform infrared spectroscopy, differential scanning calorimetry, and X‐ray diffraction measurements. It was concluded that the stress‐induced crystal‐to‐crystal transformations from orthorhombic structures to monoclinic and pseudohexagonal structures as well as the back‐transformation during relaxation were hindered by the presence of the clay. X‐ray diffraction studies on stretched samples showed that the mechanical stretching led from an intercalated structure to an almost exfoliated structure. These findings agreed with scanning electron micrographs, in which the beneficial effect of stretching on the exfoliation of the clay was evident. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 914–924, 2006  相似文献   

18.
The miscibility and structure in polypropylene/layered silicate nanocomposites is systematically investigated utilizing a maleic-anhydride grafted polypropylene with a low degree of functionalization acting as the compatibilizer. The morphology of the hybrids can be modified from phase separated to almost completely exfoliated in a controlled way by varying the ratio α of the compatibilizer to the organophilized clay; this ratio α is found to be the most important parameter in determining the final structure whereas exfoliated structures can be obtained for α values of 9 or higher. Furthermore, utilization of a “masterbatch” procedure can enhance the degree of exfoliation even for smaller values of α; in that case, polypropylene is essentially mixed with the already dispersed “hairy” platelets. Investigation of the thermal stability of the micro- and nanocomposites shows that high degree of exfoliation is vital in increasing the temperature that the polymer starts to degrade. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2683–2695, 2008  相似文献   

19.
A new material MIT-1 comprised of delaminated MWW zeolite nanosheets is made in a one-pot synthesis using a rationally designed organic structure-directing agent (OSDA). The OSDA consists of a hydrophilic head segment that resembles the OSDA used to synthesize the zeolite precursor MCM-22(P), a hydrophobic tail segment that resembles the swelling agent used to swell MCM-22(P), and a di-quaternary ammonium linker that connects both segments. MIT-1 features high crystallinity and surface areas exceeding 500 m2 g–1, and can be synthesized over a wide synthesis window that includes Si/Al ratios ranging from 13 to 67. Characterization data reveal high mesoporosity and acid strength with no detectable amorphous silica phases. Compared to MCM-22 and MCM-56, MIT-1 shows a three-fold increase in catalytic activity for the Friedel–Crafts alkylation of benzene with benzyl alcohol.  相似文献   

20.
Bo  Xu  Yi-hu  Song  Yong-gang  Shang  Guan  郑强 《高分子科学》2006,(3):299-306
Melt extrusion was used to prepare binary nanocomposites of ethylene copolymers and organoclay and trinary nanocomposites of low-density polyethylene (LDPE), ethylene copolymer and organoclay. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to analyze the structure of the clay phase and the morphology of the nanocomposites. Influences of the comonomer in the copolymer and the content of the copolymer on the morphology of the resulting nanocomposites were discussed. The binary and the trinary composites may form intercalated or exfoliated structures depending on the interaction between the copolymer and the clay layers and the content of the copolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号