首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this study was to measure the ability of adult hearing-impaired listeners to discriminate formant frequency for vowels in isolation, syllables, and sentences. Vowel formant discrimination for F1 and F2 for the vowels /I epsilon ae / was measured. Four experimental factors were manipulated including linguistic context (isolated vowels, syllables, and sentences), signal level (70 and 95 dB SPL), formant frequency, and cognitive load. A complex identification task was added to the formant discrimination task only for sentences to assess effects of cognitive load. Results showed significant elevation in formant thresholds as formant frequency and linguistic context increased. Higher signal level also elevated formant thresholds primarily for F2. However, no effect of the additional identification task on the formant discrimination was observed. In comparable conditions, these hearing-impaired listeners had elevated thresholds for formant discrimination compared to young normal-hearing listeners primarily for F2. Altogether, poorer performance for formant discrimination for these adult hearing-impaired listeners was mainly caused by hearing loss rather than cognitive difficulty for tasks implemented in this study.  相似文献   

2.
This study compared the ability of 5 listeners with normal hearing and 12 listeners with moderate to moderately severe sensorineural hearing loss to discriminate complementary two-component complex tones (TCCTs). The TCCTs consist of two pure tone components (f1 and f2) which differ in frequency by delta f (Hz) and in level by delta L (dB). In one of the complementary tones, the level of the component f1 is greater than the level of component f2 by the increment delta L; in the other tone, the level of component f2 exceeds that of component f1 by delta L. Five stimulus conditions were included in this study: fc = 1000 Hz, delta L = 3 dB; fc = 1000 Hz, delta L = 1 dB; fc = 2000 Hz, delta L = 3 dB; fc = 2000 Hz, delta L = 1 dB; and fc = 4000 Hz, delta L = 3 dB. In listeners with normal hearing, discrimination of complementary TCCTs (with a fixed delta L and a variable delta f) is described by an inverted U-shaped psychometric function in which discrimination improves as delta f increases, is (nearly) perfect for a range of delta f's, and then decreases again as delta f increases. In contrast, group psychometric functions for listeners with hearing loss are shifted to the right such that above chance performance occurs at larger values of delta f than in listeners with normal hearing. Group psychometric functions for listeners with hearing loss do not show a decrease in performance at the largest values of delta f included in this study. Decreased TCCT discrimination is evident when listeners with hearing loss are compared to listeners with normal hearing at both equal SPLs and at equal sensation levels. In both groups of listeners, TCCT discrimination is significantly worse at high center frequencies. Results from normal-hearing listeners are generally consistent with a temporal model of TCCT discrimination. Listeners with hearing loss may have deficits in using phase locking in the TCCT discrimination task and so may rely more on place cues in TCCT discrimination.  相似文献   

3.
The ability of listeners with bilateral sensorineural hearing loss to localize a speech source in a multitalker mixture was measured. Five simultaneous words spoken by different talkers were presented over loudspeakers in a small room, and listeners localized one target word. Errors were significantly larger in this group compared to a control group with normal hearing. Localization of the target presented alone was not different between groups. The results suggest that hearing loss does not impair spatial hearing per se, but degrades the spatial representation of multiple simultaneous sounds.  相似文献   

4.
Binaural performance was measured as a function of stimulus frequency for four impaired listeners, each with bilaterally symmetric audiograms. The subjects had various degrees and configurations of audiometric losses: two had high-frequency, sensorineural losses; one had a flat sensorineural loss; and one had multiple sclerosis with normal audiometric thresholds. Just noticeable differences (jnd's) in interaural time, interaural intensity, and interaural correlation as well as detection thresholds for NoSo and NoS pi conditions were obtained for narrow-band noise stimuli at octave frequencies from 250-4000 Hz. Performance of the impaired listeners was generally poorer than that of normal-hearing listeners, although it was comparable to normal in a few instances. The patterns of binaural performance showed no apparent relation to the audiometric patterns; even the two subjects with similar degree and configuration of hearing loss have very different binaural performance, both in the level and frequency dependence of their performance. The frequency dependence of performance on individual tests is irregular enough that one cannot confidently interpolate between octaves. In addition, it appears that no subset of the measurements is adequate to characterize the performance in the rest of the measurements with the exception that, within limits, interaural correlation discrimination and NoS pi detection performance are related.  相似文献   

5.
The perception of fundamental pitch for two-harmonic complex tones was examined in musically experienced listeners with cochlear-based high-frequency hearing loss. Performance in a musical interval identification task was measured as a function of the average rank of the lowest harmonic for both monotic and dichotic presentation of the harmonics at 14 dB Sensation Level. Listeners with hearing loss demonstrated excellent musical interval identification at low fundamental frequencies and low harmonic numbers, but abnormally poor identification at higher fundamental frequencies and higher average ranks. The upper frequency limit of performance in the listeners with hearing loss was similar in both monotic and dichotic conditions. These results suggest that something other than frequency resolution per se limits complex-tone pitch perception in listeners with hearing loss.  相似文献   

6.
Articulation index (AI) theory was used to evaluate stop-consonant recognition of normal-hearing listeners and listeners with high-frequency hearing loss. From results reported in a companion article [Dubno et al., J. Acoust. Soc. Am. 85, 347-354 (1989)], a transfer function relating the AI to stop-consonant recognition was established, and a frequency importance function was determined for the nine stop-consonant-vowel syllables used as test stimuli. The calculations included the rms and peak levels of the speech that had been measured in 1/3 octave bands; the internal noise was estimated from the thresholds for each subject. The AI model was then used to predict performance for the hearing-impaired listeners. A majority of the AI predictions for the hearing-impaired subjects fell within +/- 2 standard deviations of the normal-hearing listeners' results. However, as observed in previous data, the AI tended to overestimate performance of the hearing-impaired listeners. The accuracy of the predictions decreased with the magnitude of high-frequency hearing loss. Thus, with the exception of performance for listeners with severe high-frequency hearing loss, the results suggest that poorer speech recognition among hearing-impaired listeners results from reduced audibility within critical spectral regions of the speech stimuli.  相似文献   

7.
Previous research with speechlike signals has suggested that upward spread of masking from the first formant (F 1) may interfere with the identification of place of articulation information signaled by changes in the upper formants. This suggestion was tested by presenting two-formant stop consonant--vowel syllables varying along a/ba--/da/--/ga/ continuum to hearing-impaired listeners grouped according to etiological basis of the disorder. The syllables were presented monaurally at 80 dB and 100 dB SPL when formant amplitudes were equal and when F 1 amplitude was reduced by 6, 12, and 18 dB. Noise-on-tone masking patterns were also generated using narrow bands of noise at 80 and 100 dB SPL to assess the extent of upward spread of masking. Upward spread of masking could be demonstrated in both speech and nonspeech tasks, irrespective of the subject's age, audiometric configuration, or etiology of hearing impairment. Attenuation of F 1 had different effects on phonetic identification in different subject groups: While listeners with noise-induced hearing loss showed substantial improvement in identifying place of articulation, upward spread of masking did not consistently account for poor place identification in other types of sensorineural hearing impairment.  相似文献   

8.
This letter reanalyzes data from the literature in order to test two loudness-growth models for listeners with hearing losses of primarily cochlear origin: rapid growth and softness imperception. Five different studies using different methods to obtain individual loudness functions were used: absolute magnitude estimation, cross-modality matching with string length, categorical loudness scaling, loudness functions derived from binaural loudness summation, and loudness functions derived from spectral summation of loudness. Results from each of the methods show large individual differences. Individual loudness-growth functions encompass a wide range of shapes from rapid growth to softness imperception.  相似文献   

9.
This study considered consequences of sensorineural hearing loss in ten listeners. The characterization of individual hearing loss was based on psychoacoustic data addressing audiometric pure-tone sensitivity, cochlear compression, frequency selectivity, temporal resolution, and intensity discrimination. In the experiments it was found that listeners with comparable audiograms can show very different results in the supra-threshold measures. In an attempt to account for the observed individual data, a model of auditory signal processing and perception [Jepsen et al., J. Acoust. Soc. Am. 124, 422-438 (2008)] was used as a framework. The parameters of the cochlear processing stage of the model were adjusted to account for behaviorally estimated individual basilar-membrane input-output functions and the audiogram, from which the amounts of inner hair-cell and outer hair-cell losses were estimated as a function of frequency. All other model parameters were left unchanged. The predictions showed a reasonably good agreement with the measured individual data in the frequency selectivity and forward masking conditions while the variation of intensity discrimination thresholds across listeners was underestimated by the model. The model and the associated parameters for individual hearing-impaired listeners might be useful for investigating effects of individual hearing impairment in more complex conditions, such as speech intelligibility in noise.  相似文献   

10.
To investigate how hearing loss of primarily cochlear origin affects the loudness of brief tones, loudness matches between 5- and 200-ms tones were obtained as a function of level for 15 listeners with cochlear impairments and for seven age-matched controls. Three frequencies, usually 0.5, 1, and 4 kHz, were tested in each listener using a two-interval, two--alternative forced--choice (2I, 2AFC) paradigm with a roving-level, up-down adaptive procedure. Results for the normal listeners generally were consistent with published data [e.g., Florentine et al., J. Acoust Soc. Am. 99, 1633-1644 (1996)]. The amount of temporal integration--defined as the level difference between equally loud short and long tones--varied nonmonotonically with level and was largest at moderate levels. No consistent effect of frequency was apparent. The impaired listeners varied widely, but most showed a clear effect of level on the amount of temporal integration. Overall, their results appear consistent with expectations based on knowledge of the general properties of their loudness-growth functions and the equal-loudness-ratio hypothesis, which states that the loudness ratio between equal-SPL long and brief tones is the same at all SPLs. The impaired listeners' amounts of temporal integration at high SPLs often were larger than normal, although it was reduced near threshold. When evaluated at equal SLs, the amount of temporal integration well above threshold usually was in the low end of the normal range. Two listeners with abrupt high-frequency hearing losses (slopes > 50 dB/octave) showed larger-than-normal maximal amounts of temporal integration (40 to 50 dB). This finding is consistent with the shallow loudness functions predicted by our excitation-pattern model for impaired listeners [Florentine et al., in Modeling Sensorineural Hearing Loss, edited by W. Jesteadt (Erlbaum, Mahwah, NJ, 1997), pp. 187-198]. Loudness functions derived from impaired listeners' temporal-integration functions indicate that restoration of loudness in listeners with cochlear hearing loss usually will require the same gain whether the sound is short or long.  相似文献   

11.
Thresholds of ongoing interaural time difference (ITD) were obtained from normal-hearing and hearing-impaired listeners who had high-frequency, sensorineural hearing loss. Several stimuli (a 500-Hz sinusoid, a narrow-band noise centered at 500 Hz, a sinusoidally amplitude-modulated 4000-Hz tone, and a narrow-band noise centered at 4000 Hz) and two criteria [equal sound-pressure level (Eq SPL) and equal sensation level (Eq SL)] for determining the level of stimuli presented to each listener were employed. The ITD thresholds and slopes of the psychometric functions were elevated for hearing-impaired listeners for the two high-frequency stimuli in comparison to: the listener's own low-frequency thresholds; and data obtained from normal-hearing listeners for stimuli presented with Eq SPL interaurally. The two groups of listeners required similar ITDs to reach threshold when stimuli were presented at Eq SLs to each ear. For low-frequency stimuli, the ITD thresholds of the hearing-impaired listener were generally slightly greater than those obtained from the normal-hearing listeners. Whether these stimuli were presented at either Eq SPL or Eq SL did not differentially affect the ITD thresholds across groups.  相似文献   

12.
The purpose of this study is to specify the contribution of certain frequency regions to consonant place perception for normal-hearing listeners and listeners with high-frequency hearing loss, and to characterize the differences in stop-consonant place perception among these listeners. Stop-consonant recognition and error patterns were examined at various speech-presentation levels and under conditions of low- and high-pass filtering. Subjects included 18 normal-hearing listeners and a homogeneous group of 10 young, hearing-impaired individuals with high-frequency sensorineural hearing loss. Differential filtering effects on consonant place perception were consistent with the spectral composition of acoustic cues. Differences in consonant recognition and error patterns between normal-hearing and hearing-impaired listeners were observed when the stimulus bandwidth included regions of threshold elevation for the hearing-impaired listeners. Thus place-perception differences among listeners are, for the most part, associated with stimulus bandwidths corresponding to regions of hearing loss.  相似文献   

13.
Young normal-hearing listeners, elderly normal-hearing listeners, and elderly hearing-impaired listeners were tested on a variety of phonetic identification tasks. Where identity was cued by stimulus duration, the elderly hearing-impaired listeners evidenced normal identification functions. On a task in which there were multiple cues to vowel identity, performance was also normal. On a/b d g/identification task in which the starting frequency of the second formant was varied, performance was abnormal for both the elderly hearing-impaired listeners and the elderly normal-hearing listeners. We conclude that errors in phonetic identification among elderly hearing-impaired listeners with mild to moderate, sloping hearing impairment do not stem from abnormalities in processing stimulus duration. The results with the /b d g/continuum suggest that one factor underlying errors may be an inability to base identification on dynamic spectral information when relatively static information, which is normally characteristic of a phonetic segment, is unavailable.  相似文献   

14.
The goal of this study was to determine the extent to which the difficulty experienced by impaired listeners in understanding noisy speech can be explained on the basis of elevated tone-detection thresholds. Twenty-one impaired ears of 15 subjects, spanning a variety of audiometric configurations with average hearing losses to 75 dB, were tested for reception of consonants in a speech-spectrum noise. Speech level, noise level, and frequency-gain characteristic were varied to generate a range of listening conditions. Results for impaired listeners were compared to those of normal-hearing listeners tested under the same conditions with extra noise added to approximate the impaired listeners' detection thresholds. Results for impaired and normal listeners were also compared on the basis of articulation indices. Consonant recognition by this sample of impaired listeners was generally comparable to that of normal-hearing listeners with similar threshold shifts listening under the same conditions. When listening conditions were equated for articulation index, there was no clear dependence of consonant recognition on average hearing loss. Assuming that the primary consequence of the threshold simulation in normals is loss of audibility (as opposed to suprathreshold discrimination or resolution deficits), it is concluded that the primary source of difficulty in listening in noise for listeners with moderate or milder hearing impairments, aside from the noise itself, is the loss of audibility.  相似文献   

15.
This study examined proportional frequency compression as a strategy for improving speech recognition in listeners with high-frequency sensorineural hearing loss. This method of frequency compression preserved the ratios between the frequencies of the components of natural speech, as well as the temporal envelope of the unprocessed speech stimuli. Nonsense syllables spoken by a female and a male talker were used as the speech materials. Both frequency-compressed speech and the control condition of unprocessed speech were presented with high-pass amplification. For the materials spoken by the female talker, significant increases in speech recognition were observed in slightly less than one-half of the listeners with hearing impairment. For the male-talker materials, one-fifth of the hearing-impaired listeners showed significant recognition improvements. The increases in speech recognition due solely to frequency compression were generally smaller than those solely due to high-pass amplification. The results indicate that while high-pass amplification is still the most effective approach for improving speech recognition of listeners with high-frequency hearing loss, proportional frequency compression can offer significant improvements in addition to those provided by amplification for some patients.  相似文献   

16.
To determine the minimum difference in amplitude between spectral peaks and troughs sufficient for vowel identification by normal-hearing and hearing-impaired listeners, four vowel-like complex sounds were created by summing the first 30 harmonics of a 100-Hz tone. The amplitudes of all harmonics were equal, except for two consecutive harmonics located at each of three "formant" locations. The amplitudes of these harmonics were equal and ranged from 1-8 dB more than the remaining components. Normal-hearing listeners achieved greater than 75% accuracy when peak-to-trough differences were 1-2 dB. Normal-hearing listeners who were tested in a noise background sufficient to raise their thresholds to the level of a flat, moderate hearing loss needed a 4-dB difference for identification. Listeners with a moderate, flat hearing loss required a 6- to 7-dB difference for identification. The results suggest, for normal-hearing listeners, that the peak-to-trough amplitude difference required for identification of this set of vowels is very near the threshold for detection of a change in the amplitude spectrum of a complex signal. Hearing-impaired listeners may have difficulty using closely spaced formants for vowel identification due to abnormal smoothing of the internal representation of the spectrum by broadened auditory filters.  相似文献   

17.
A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal modulation transfer functions (TMTFs) for nine listeners with mild to profound sensorineural hearing loss. Each hearing loss was simulated in a group of three age-matched normal-hearing listeners through spectrally shaped masking noise or a combination of masking noise and multiband expansion. TMTFs were measured for both groups of listeners using a broadband noise carrier as a function of modulation rate in the range 2 to 1024 Hz. The TMTFs were fit with a lowpass filter function that provided estimates of overall modulation-depth sensitivity and modulation cutoff frequency. Although the simulations were capable of accurately reproducing the threshold elevations of the hearing-impaired listeners, they were not successful in reproducing the TMTFs. On average, the simulations resulted in lower sensitivity and higher cutoff frequency than were observed in the TMTFs of the hearing-impaired listeners. Discrepancies in performance between listeners with real and simulated hearing loss are possibly related to inaccuracies in the simulation of recruitment.  相似文献   

18.
The minimum sensation levels required for optimal temporal gap resolution were measured in five listeners with moderately severe degrees of sensorineural hearing loss. The stimuli were three continuous octave-band noises centered at 0.5, 2.0, and 4.0 kHz. Subjects used a Békésy tracking procedure to determine the minimum signal levels needed to resolve periodic temporal gaps of fixed durations. Analysis of data across subjects and signal revealed only a weak correlation between this minimum SL and the corresponding HLs; most listeners resolved threshold gaps at minimum levels of 25-35 dB SL, independent of degree of hearing loss. The results differ from those of normal subjects with masking-induced hearing loss [Fitzgibbons, Percept. Psychophys. 35, 446-450 (1984)], which showed an inverse relationship between HL and the SLs required for gap threshold. The findings indicate that assessment of optimal gap resolution in listeners with cochlear impairment requires stimulus presentation levels of at least 25-35 dB SL. Even with sufficient stimulus intensity, each of the hearing-impaired listeners exhibited abnormal gap resolution for each octave-band signal.  相似文献   

19.
A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal masking functions for eight listeners with mild to severe sensorineural hearing loss. Each audiometric loss was simulated in a group of age-matched normal-hearing listeners through a combination of spectrally-shaped masking noise and multi-band expansion. Temporal-masking functions were obtained in both groups of listeners using a forward-masking paradigm in which the level of a 110-ms masker required to just mask a 10-ms fixed-level probe (5-10 dB SL) was measured as a function of the time delay between the masker offset and probe onset. At each of four probe frequencies (500, 1000, 2000, and 4000 Hz), temporal-masking functions were obtained using maskers that were 0.55, 1.0, and 1.15 times the probe frequency. The slopes and y-intercepts of the masking functions were not significantly different for listeners with real and simulated hearing loss. The y-intercepts were positively correlated with level of hearing loss while the slopes were negatively correlated. The ratio of the slopes obtained with the low-frequency maskers relative to the on-frequency maskers was similar for both groups of listeners and indicated a smaller compressive effect than that observed in normal-hearing listeners.  相似文献   

20.
Spectral peak resolution was investigated in normal hearing (NH), hearing impaired (HI), and cochlear implant (CI) listeners. The task involved discriminating between two rippled noise stimuli in which the frequency positions of the log-spaced peaks and valleys were interchanged. The ripple spacing was varied adaptively from 0.13 to 11.31 ripples/octave, and the minimum ripple spacing at which a reversal in peak and trough positions could be detected was determined as the spectral peak resolution threshold for each listener. Spectral peak resolution was best, on average, in NH listeners, poorest in CI listeners, and intermediate for HI listeners. There was a significant relationship between spectral peak resolution and both vowel and consonant recognition in quiet across the three listener groups. The results indicate that the degree of spectral peak resolution required for accurate vowel and consonant recognition in quiet backgrounds is around 4 ripples/octave, and that spectral peak resolution poorer than around 1-2 ripples/octave may result in highly degraded speech recognition. These results suggest that efforts to improve spectral peak resolution for HI and CI users may lead to improved speech recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号