首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tonal noise radiated by a two-dimensional cavity submerged in a low-speed turbulent flow has been investigated computationally using a hybrid scheme that couples numerical flow computations with an implementation of the Ffowcs Williams-Hawkings equation. The turbulent near field is computed by solving the short-time-averaged, thin-layer approximation of the Navier-Stokes equations, with turbulence modelled by the Wilcox k-ω model. Second order spatial and temporal discretization schemes with fine grids in the immediate region of the cavity and a small time step were used to capture the unsteady flow physics. Along all external boundaries, a buffer zone is implemented to absorb propagating disturbances and prevent spurious numerical reflections. Comparisons with experimental data demonstrate good agreement in both the frequency and amplitude of the oscillations within the cavity. The unsteady characteristics of the cavity flow are discussed, together with the mechanisms for cavity noise generation. The influence of freestream flow velocity and boundary layer thickness on the frequency and amplitude of the oscillations within the cavity and the nature of the noise radiated to the far field are also investigated. Results indicate that both the frequency and amplitude of oscillation are sensitively dependent on the characteristics of the shear layer spanning the mouth of the cavity.  相似文献   

2.
The self-oscillatory interaction of supersonic jets with barriers has mainly been studied for under-expanded jets. There are only a few experimental studies examining the case of overexpanded jets, with little computational work done in this direction. To fill this gap, we performed numerical simulations of overexpanded supersonic jets with barriers. The calculations were performed by the Godunov method on fine grids using parallel programming techniques. In the course of numerical simulations, the gasdynamic parameters of the jet and the geometric parameter of the barrier were varied. The barrier had the shape of a cylindrical cavity of depth l = (0 − 18)r a , where r a is the nozzle exit radius (the case l = 0 corresponds to a flat-end barrier). Based on the results of the numerical simulations, the conclusion on whether the self-oscillation process occurs was drawn and the dependence its characteristics (frequency and amplitude) on the governing gasdynamic and geometric parameters were obtained. Good agreement with experimental data on the fundamental tone frequency was demonstrated. A low-frequency oscillation mode was mostly realized. In this case, the jet experienced periodic suctions into and ejections from the cavity, counter the oncoming jet flow, with the formation of a structure consisting of three discontinuity surfaces (two shock waves and a separating surface contact).  相似文献   

3.
Liquid-liquid driven cavity flow was studied numerically. Information on "realistic" liquid-liquid interface conditions were obtained from photochromic flow visualization experiments. With this input, numerically obtained flow fields agreed well with experimentally observed flow fields. A parametric numerical study showed the influence of various parameters on the behavior of interface velocity and tangential shear stress gradients in the vicinity of the liquid-liquid interface.  相似文献   

4.
In the present work, both computational and experimental methods are employed to study the two-phase flow occurring in a model pump sump. The two-fluid model of the two-phase flow has been applied to the simulation of the three-dimensional cavitating flow. The governing equations of the two-phase cavitating flow are derived from the kinetic theory based on the Boltzmann equation. The isotropic RNG$k-\epsilon-k_{ca}$ turbulence model of two-phase flows in the form of cavity number instead of the form of cavity phase volume fraction is developed. The RNG $k-\epsilon-k_{ca}$ turbulence model, that is the RNG$k-\epsilon$ turbulence model for the liquid phase combined with the $k_{ca}$model for the cavity phase, is employed to close the governing turbulent equations of the two-phase flow. The computation of the cavitating flow through a model pump sump has been carried out with this model in three-dimensional spaces. The calculated results have been compared with the data of the PIV experiment. Good qualitative agreement has been achieved which exhibits the reliability of the numerical simulation model.  相似文献   

5.
In the present work, reacting flow characteristics of a 2D trapped vortex combustor (TVC) have been investigated numerically. Turbulent flow prevailing in the combustor is modelled using the two equation shear stress transport (SST) k-ω model and the turbulence–chemistry interactions are modelled using the eddy dissipation concept (EDC) model. Validation study reveals that the data generated by numerical model for reacting flow cases matches reasonably well with the experimental data. Simulation results indicate that for a particular operating condition, the flow structure within the cavity for reacting flow cases is significantly different from non-reacting flow cases. Besides this, under reacting flow condition, the vortex core location shifts with variation in operating condition. This study also reveals significant differences in the velocity gradient at the shear layer between reacting and non-reacting flow conditions. Furthermore, the turbulent kinetic energy at the cavity zone increases for the reacting flow condition, which is attributed to the volume expansion associated with the combustion processes. Also, temperature contours at locations downstream of the trailing edge indicate that both cavity flames are merged together for higher primary air velocity cases, and this is essential for efficient performance of TVC.  相似文献   

6.
A set of gasdynamic equations is given in the general form for matter with an arbitrary equation of state in the case when the entropy equation is used instead of the energy equation. In the ideal gas approximation in view of viscosity, a numerical investigation is performed of non-steady-state two-dimensional flows in a channel with a cavity. The calculation results have demonstrated that, given the flow velocity and the geometry of channel and cavity, pressure pulsations arise that are due to the departure of vortices from the cavity into the main flow. The values of the amplitude and frequency of pressure pulsations are determined. If measures are taken aimed at limiting the departure of vortices from the cavity, for example, a baffle is installed to restrict the interaction between the main flow and gas in the cavity, one can considerably increase the flow velocity in the channel, unaffected by the cavity. Such non-steady-state flows may be realized in MHD-generator channels, resonators of gas flow lasers, gas ducts for ventilation and gas transport systems, mufflers, whistles, etc.  相似文献   

7.
Results of an experimental and numerical study of a supersonic flow over a model forward-facing step with a gas-permeable insert of variable porosity installed upstream of the step are reported. The free-stream Mach number was M = 2.0, 2.5, and 3.0, and the Reynolds number, Re = 5·105. The gas-permeable insert was either a section of a perforated plate or a section of a highly porous permeable cellular material. The flow visualization performed using the shadow method, PIV, and a soot-oil film has shown that the characteristic size of the vortical flow region exhibited a profound decrease on increasing the insert porosity. In numerical calculations performed at high values of that po-rosity, data on the displacement of the recirculation flow region into the porous material were obtained.  相似文献   

8.
A numerical study of the aerodynamics of a building of a complex shape has been performed taking into account the location of surrounding buildings. Simulation data based on full mathematical models of continuum mechanics have allowed us to reveal the spatial structure of the turbulent separated atmospheric flow in the neighborhood of the building, and to evaluate the wind load exerted on the building. A comparison between the calculated data for the air flow past the examined building located in a group of other buildings and past the same building at its isolated location was performed. Based on the obtained data, the impact of interference effects on the aerodynamics of buildings in urban areas was evaluated. A comparison of calculated with experimental data was performed. A satisfactory agreement between the two datasets was obtained.  相似文献   

9.
槽内热磁耦合流动换热数值模拟   总被引:1,自引:1,他引:0  
数值模拟研究了矩形槽内导电流体由于焦耳热作用和电磁力共同作用引起的流动换热现象.数值结果表明,在给定流体性质情况下,焦耳热作用引起对流为两涡,电磁力作用时获得四涡流动,随Ha数的增加,电磁力驱动对流作用增大,热、磁共同作用时,流场温度场与Ha2Pr/Ra大小有关,从而影响到对流换热的强弱,在临界Ha2Pr/Ra以下,焦耳热引起的对流为主,Ha数增加,减弱换热;在临界日Ha2Pr/Ra以上,电磁力驱动的对流为主,Ha数增加,换热强化.  相似文献   

10.
The problem of the mixed convection in a cubic cavity is studied with lattice Boltzmann method. A multiple-relaxation-time lattice Boltzmann model for incompressible flow in the cubic cavity and another thermal lattice Boltzmann model for solving energy/temperature equation are proposed. The present models are first validated through a comparison with some available results, and then, we present a detailed parameter study on the mixed
convection in the cubic cavity. The numerical results show that the flow and temperature patterns change greatly with variations of the Reynolds and Richardson numbers.  相似文献   

11.
In this article, flow and heat transfer inside a corrugated cavity is analyzed for natural convection with a heated inner obstacle. Thermal performance is analyzed for Cu O–water inside a partially heated domain by defining the constraint along the boundaries. For nanofluid analysis, the Koo and Kleinstreuer Li(KKL) model is implemented to deal with the effective thermal conductivity and viscosity. A heated thin rod is placed inside the corrugated cavity and the bottom portion of the corrugated cavity is partially heated. The dimensionless form of nonlinear partial differential equations are obtained through the compatible transformation along with the boundary constraint. The finite element method is executed to acquire the numerical solution of the obtained dimensional system. Streamlines, isotherms and heat transfers are analyzed for the flow field and temperature distribution. The Nusselt number is calculated at the surface of the partially heated domain for various numerical values of emerging parameters by considering the inner obstacle at cold, adiabatic and heated conditions. The computational simulation was performed by introducing various numerical values of emerging parameters. Important and significant results have been attained for temperature and velocities(in both x-and y-directions) at the vertically and horizontally mean positions of the corrugated duct.  相似文献   

12.
Based on the solutions of apparent heat capacity method for phase-change problems, numerical simulations were performed to study the heat-storage and release processes for the multi-cavity-structured phase-change microcapsules in this paper. Moreover, the influence of the cavity structures of the phase-change microcapsules on the heat-storage and release capacity was analyzed. The results show that the rate of heat-storage and release will be accelerated by increasing the number of cavities in microcapsules, and cavity interlayer is the key factor to enhance the heat transfer.  相似文献   

13.
卢玉华  詹杰民 《物理学报》2006,55(9):4774-4782
研究了温盐双扩散系统的多组分格子Boltzmann方法.通过对二维方腔的温盐双扩散系统的数值模拟,检验了方法的可行性及有效性,所得到的结果与差分法结果符合良好,继而将此方法推广到三维,建立了三维温盐双扩散系统的格子Boltzmann方法,对三维方腔双扩散问题进行了模拟和分析,并与差分法模拟的结果进行了比较,结果令人满意.最后,分析了格子Boltzmann方法在模拟双扩散对流问题时存在的局限性. 关键词: 格子Boltzmann方法 温盐双扩散 Boussinesq近似 数值模拟  相似文献   

14.

Abstract  

As effective devices to extend the fuel residence time in supersonic flow and prolong the duration time for hypersonic vehicles cruising in the near-space with power, the backward-facing step and the cavity are widely employed in hypersonic airbreathing propulsive systems as flameholders. The two-dimensional coupled implicit RANS equations, the standard k-ε turbulence model, and the finite-rate/eddy-dissipation reaction model have been used to generate the flow field structures in the scramjet combustors with the backward-facing step and the cavity flameholders. The flameholding mechanism in the combustor has been investigated by comparing the flow field in the corner region of the backward-facing step with that around the cavity flameholder. The obtained results show that the numerical simulation results are in good agreement with the experimental data, and the different grid scales make only a slight difference to the numerical results. The vortices formed in the corner region of the backward-facing step, in the cavity and upstream of the fuel injector make a large difference to the enhancement of the mixing between the fuel and the free airstream, and they can prolong the residence time of the mixture and improve the combustion efficiency in the supersonic flow. The size of the recirculation zone in the scramjet combustor partially depends on the distance between the injection and the leading edge of the cavity. Further, the shock waves in the scramjet combustor with the cavity flameholder are much stronger than those that occur in the scramjet combustor with the backward-facing step, and this causes a large increase in the static pressure along the walls of the combustor.  相似文献   

15.
This paper is dedicated to the numerical study of natural ventilation in a room through a large external opening using the CFD code Fluent. Bidimensional numerical simulations are performed for wind speeds up to 5.55 m·s−1 (20 km·h−1). We propose a two-step solution procedure with grid refinement. When combined with appropriate thermal boundary conditions, this technique appears very efficient at limiting local convergence problems. Through an analysis of the flow pattern in the cavity, we qualitatively explain those results and define a critical Archimedes number. Calculated air change rates are compared to values deduced from empirical correlations of the literature. Agreement is in general poor, which can be explained by the differences between the conditions of our simulations and those of the experiments that lead to those correlations. However, from our simulations, we derived very clear correlations between the air change coefficient and the Archimedes number. In the last part, our results are compared with published data from two experiments. Agreement, in terms of air change coefficient, is within 26 % on average with the Porto test cell data which is closest to our numerical conditions. One should be careful about the transposition of our results to different ventilation scenarios.  相似文献   

16.
A two-dimensional double Multiple Relaxation Time-Thermal Lattice Boltzmann Equation (2-MRT-TLBE) method is developed for predicting convective flows in a square differentially heated cavity filled with air (Pr=0.71). In this Letter, we propose a numerical scheme to solve the flow and the temperature fields using the MRT-D2Q9 model and the MRT-D2Q5 model, respectively. Thus, the main objective of this study is to show the effectiveness of such model to predict thermodynamics for heat transfer. This model is validated by the numerical simulations of the 2-D convective square cavity flow. Excellent agreements are obtained between numerical predictions. These results demonstrate the accuracy and the effectiveness of the proposed methodology.  相似文献   

17.
Based on data obtained in the previous experimental study conducted by the authors, two approaches are proposed for analytical and numerical modeling of a critical two-phase flow in a pipe with a granular layer. An analytical approach is based on a polytrophic model, while a numerical approach was developed using a smoothed particle hydrodynamics method. A model of isenthalpic flow of vapor–water mixture in a fixed bed of solid particles is considered is this study. The mixture expansion process is considered to be polytropic. Similarly to the known problem of gas dynamics of a granular bed, an analytical relationship for calculation of a critical mass velocity was obtained. The results of the calculation based on the analytical and numerical models were compared with the experimental data and agreement between analytical and numerical data and the experiment was observed.  相似文献   

18.
In this study, we have developed a new numerical approach to solve differential-type viscoelastic fluid models for a commonly used benchmark problem, namely, the steady Taylor—Couette flow between eccentric cylinders. The proposed numerical approach is special in that the nonlinear system of discretized algebraic flow equations is solved iteratively using a Newton–Krylov method along with an inverse-based incomplete lower-upper preconditioner. The numerical approach has been validated by solving the benchmark problem for the upper-convected Maxwell model at a large Deborah number. Excellent agreement with the numerical data reported in the literature has been found. In addition, a parameter study was performed for an extended White–Metzner model. A large eccentricity ratio was chosen for the cylinder system in order to allow flow recirculation to occur. We detected several interesting phenomena caused by the large eccentricity ratio of the cylinder system and by the viscoelastic nature of the fluid. Encouraged by the results of this study, we intend to investigate other polymeric fluids having a more complex microstructure in an eccentric annular flow field.  相似文献   

19.
马小亮  杨国伟 《计算物理》2010,27(3):375-380
采用基于Menter SST两方程湍流模型的DES方法,数值模拟开式凹腔在跨声速条件下的非定常流动特性.计算凹腔底部和后壁面上的点的声压级频谱以及总声压级,证明在第二噪声模态上的声压级最大.  相似文献   

20.
The present paper concerns the improvement of the gas-kinetic scheme (GKS) for low speed flow computation. In the modified GKS scheme, the flow distributions with discontinuous derivatives are used as an initial condition at the cell interface for the flux evaluation. This discontinuity is determined by considering both the flow characteristic and grid’s resolution. Compared with GKS method with a continuous slope for the flow variables at a cell interface, the new scheme is more robust and accurate. In the under resolved flow computation, the new scheme presents much less numerical oscillation. The extension of the current scheme to unstructured mesh is straightforward. To validate the method, both computations of 2D lid-driven cavity flow and 3D flow past a sphere are performed. The numerical results validate the current method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号