首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.  相似文献   

3.
Two new prototype delocalized pi[dot dot dot]pi complexes are introduced: the dimers of cyanogen, (N[triple bond]C-C[triple bond]N)(2), and diacetylene, (HC[triple bond]C-C[triple bond]CH)(2). These dimers have properties similar to larger delocalized pi...pi systems such as benzene dimer but are small enough that they can be probed in far greater detail with high accuracy electronic structure methods. Parallel-slipped and T-shaped structures of both cyanogen dimer and diacetylene dimer have been optimized with 15 different procedures. The effects of basis set size, theoretical method, counterpoise correction, and the rigid monomer approximation on the structure and energetics of each dimer have been examined. MP2 and CCSD(T) optimized geometries for all four dimer structures are reported, as well as estimates of the CCSD(T) complete basis set (CBS) interaction energy for every optimized geometry. The data reported here suggest that future optimizations of delocalized pi[dot dot dot]pi clusters should be carried out with basis sets of triple-zeta quality. Larger basis sets and the expensive counterpoise correction to the molecular geometry are not necessary. The rigid monomer approximation has very little effect on structure and energetics of these dimers and may be used without consequence. Due to a consistent cancellation of errors, optimization with the MP2 method leads to CCSD(T)/CBS interaction energies that are within 0.2 kcal mol(-1) of those for structures optimized with the CCSD(T) method. Future studies that aim to resolve structures separated by a few tenths of a kcal mol(-1) should consider the effects of optimization with the CCSD(T) method.  相似文献   

4.
Stacking energies in low-energy geometries of pyrimidine, uracil, cytosine, and guanine homodimers were determined by the MP2 and CCSD(T) calculations utilizing a wide range of split-valence, correlation-consistent, and bond-functions basis sets. Complete basis set MP2 (CBS MP2) stacking energies extrapolated using aug-cc-pVXZ (X = D, T, and for pyrimidine dimer Q) basis sets equal to -5.3, -12.3, and -11.2 kcal/mol for the first three dimers, respectively. Higher-order correlation corrections estimated as the difference between MP2 and CCSD(T) stacking energies amount to 2.0, 0.7, and 0.9 kcal/mol and lead to final estimates of the genuine stacking energies for the three dimers of -3.4, -11.6, and -10.4 kcal/mol. The CBS MP2 stacking-energy estimate for guanine dimer (-14.8 kcal/mol) was based on the 6-31G(0.25) and aug-cc-pVDZ calculations. This simplified extrapolation can be routinely used with a meaningful accuracy around 1 kcal/mol for large aromatic stacking clusters. The final estimate of the guanine stacking energy after the CCSD(T) correction amounts to -12.9 kcal/mol. The MP2/6-31G(0.25) method previously used as the standard level to calculate aromatic stacking in hundreds of geometries of nucleobase dimers systematically underestimates the base stacking by ca. 1.0-2.5 kcal/mol per stacked dimer, covering 75-90% of the intermolecular correlation stabilization. We suggest that this correction is to be considered in calibration of force fields and other cheaper computational methods. The quality of the MP2/6-31G(0.25) predictions is nevertheless considerably better than suggested on the basis of monomer polarizability calculations. Fast and very accurate estimates of the MP2 aromatic stacking energies can be achieved using the RI-MP2 method. The CBS MP2 calculations and the CCSD(T) correction, when taken together, bring only marginal changes to the relative stability of H-bonded and stacked base pairs, with a slight shift of ca. 1 kcal/mol in favor of H-bonding. We suggest that the present values are very close to ultimate predictions of the strength of aromatic base stacking of DNA and RNA bases.  相似文献   

5.
Stabilisation energies of stacked structures of C(6)H(6)...C(6)X(6) (X = F, Cl, Br, CN) complexes were determined at the CCSD(T) complete basis set (CBS) limit level. These energies were constructed from MP2/CBS stabilisation energies and a CCSD(T) correction term determined with a medium basis set (6-31G**). The former energies were extrapolated using the two-point formula of Helgaker et al. from aug-cc-pVDZ and aug-cc-pVTZ Hartree-Fock energies and MP2 correlation energies. The CCSD(T) correction term is systematically repulsive. The final CCSD(T)/CBS stabilisation energies are large, considerably larger than previously calculated and increase in the series as follows: hexafluorobenzene (6.3 kcal mol(-1)), hexachlorobenzene (8.8 kcal mol(-1)), hexabromobenzene (8.1 kcal mol(-1)) and hexacyanobenzene (11.0 kcal mol(-1)). MP2/SDD** relativistic calculations performed for all complexes mentioned and also for benzene[dot dot dot]hexaiodobenzene have clearly shown that due to relativistic effects the stabilisation energy of the hexaiodobenzene complex is lower than that of hexabromobenzene complex. The decomposition of the total interaction energy to physically defined energy components was made by using the symmetry adapted perturbation treatment (SAPT). The main stabilisation contribution for all complexes investigated is due to London dispersion energy, with the induction term being smaller. Electrostatic and induction terms which are attractive are compensated by their exchange counterparts. The stacked motif in the complexes studied is very stable and might thus be valuable as a supramolecular synthon.  相似文献   

6.
In benchmark-quality studies of non-covalent interactions, it is common to estimate interaction energies at the complete basis set (CBS) coupled-cluster through perturbative triples [CCSD(T)] level of theory by adding to CBS second-order perturbation theory (MP2) a "coupled-cluster correction," δ(MP2)(CCSD(T)), evaluated in a modest basis set. This work illustrates that commonly used basis sets such as 6-31G*(0.25) can yield large, even wrongly signed, errors for δ(MP2)(CCSD(T)) that vary significantly by binding motif. Double-ζ basis sets show more reliable results when used with explicitly correlated methods to form a δ(MP2-F12)(CCSD(T(*))-F12) correction, yielding a mean absolute deviation of 0.11 kcal mol(-1) for the S22 test set. Examining the coupled-cluster correction for basis sets up to sextuple-ζ in quality reveals that δ(MP2)(CCSD(T)) converges monotonically only beyond a turning point at triple-ζ or quadruple-ζ quality. In consequence, CBS extrapolation of δ(MP2)(CCSD(T)) corrections before the turning point, generally CBS (aug-cc-pVDZ,aug-cc-pVTZ), are found to be unreliable and often inferior to aug-cc-pVTZ alone, especially for hydrogen-bonding systems. Using the findings of this paper, we revise some recent benchmarks for non-covalent interactions, namely the S22, NBC10, HBC6, and HSG test sets. The maximum differences in the revised benchmarks are 0.080, 0.060, 0.257, and 0.102 kcal mol(-1), respectively.  相似文献   

7.
Using the SAPT2 + 3(CCD)δMP2 method in complete basis set (CBS) limit, it is shown that the interactions in the recently studied silane⋯carbene dimers are mainly dispersive in nature. Consequently, slow convergence of dispersion energy also forces slow convergence of the interaction energy. Therefore, obtaining very accurate values requires extrapolation of the correlation part to the CBS limit. The most accurate values obtained at the CCSD(T)/CBS level of theory show that the studied silane⋯carbene dimers are rather weakly bound, with interaction energies ranging from about −1.9 to −1.3 kcal/mol. Comparing to CCSD(T)/CBS, it will be shown that SCS-MP2 and MP2C methods clearly underestimate and methods based on SAPT2+ and having some third-order corrections, as well as the MP2 method, overestimate values of interaction energies. Popular SAPT(DFT) method performs better than SCS-MP2 and MP2C; nevertheless, underestimation is still considerable. The underestimation is slightly quenched if third-order dispersion energy and its exchange counterpart is added to the SAPT(DFT). The closest value of CCSD(T)/CBS has been given by the SAPT2 + (3)(CCD)δMP2 method in quadruple-ζ basis set. © 2019 Wiley Periodicals, Inc.  相似文献   

8.
9.
A systematic theoretical investigation on a series of dimeric complexes formed between some halocarbon molecules and electron donors has been carried out by employing both ab initio and density functional methods. Full geometry optimizations are performed at the Moller-Plesset second-order perturbation (MP2) level of theory with the Dunning's correlation-consistent basis set, aug-cc-pVDZ. Binding energies are extrapolated to the complete basis set (CBS) limit by means of two most commonly used extrapolation methods and the aug-cc-pVXZ (X = D, T, Q) basis sets series. The coupled cluster with single, double, and noniterative triple excitations [CCSD(T)] correction term, determined as a difference between CCSD(T) and MP2 binding energies, is estimated with the aug-cc-pVDZ basis set. In general, the inclusion of higher-order electron correlation effects leads to a repulsive correction with respect to those predicted at the MP2 level. The calculations described herein have shown that the CCSD(T) CBS limits yield binding energies with a range of -0.89 to -4.38 kcal/mol for the halogen-bonded complexes under study. The performance of several density functional theory (DFT) methods has been evaluated comparing the results with those obtained from MP2 and CCSD(T). It is shown that PBEKCIS, B97-1, and MPWLYP functionals provide accuracies close to the computationally very expensive ab initio methods.  相似文献   

10.
A 3-body:many-body integrated quantum mechanical (QM) fragmentation method for non-covalent clusters is introduced within the ONIOM formalism. The technique captures all 1-, 2-, and 3-body interactions with a high-level electronic structure method, while a less demanding low-level method is employed to recover 4-body and higher-order interactions. When systematically applied to 40 low-lying (H(2)O)(n) isomers ranging in size from n = 3 to 10, the CCSD(T):MP2 3-body:many-body fragmentation scheme deviates from the full CCSD(T) interaction energy by no more than 0.07 kcal mol(-1) (or <0.01 kcal mol(-1) per water). The errors for this QM:QM method increase only slightly for various low-lying isomers of (H(2)O)(16) and (H(2)O)(17) (always within 0.13 kcal mol(-1) of the recently reported canonical CCSD(T)/aug-cc-pVTZ energies). The 3-body:many-body CCSD(T):MP2 procedure is also very efficient because the CCSD(T) computations only need to be performed on subsets of the cluster containing 1, 2, or 3 monomers, which in the current context means the largest CCSD(T) calculations are for 3 water molecules, regardless of the cluster size.  相似文献   

11.
A model chemistry for the evaluation of intermolecular interaction between aromatic molecules (AIMI Model) has been developed. The CCSD(T) interaction energy at the basis set limit has been estimated from the MP2 interaction energy near the basis set limit and the CCSD(T) correction term obtained by using a medium size basis set. The calculated interaction energies of the parallel, T-shaped,and slipped-parallel benzene dimers are -1.48, -2.46, and -2.48 kcal/mol, respectively. The substantial attractive interaction in benzene dimer, even where the molecules are well separated, shows that the major source of attraction is not short-range interactions such as charge-transfer but long-range interactions such as electrostatic and dispersion. The inclusion of electron correlation increases attraction significantly. The dispersion interaction is found to be the major source of attraction in the benzene dimer. The orientation dependence of the dimer interaction is mainly controlled by long-range interactions. Although electrostatic interaction is considerably weaker than dispersion interaction, it is highly orientation dependent. Dispersion and electrostatic interactions are both important for the directionality of the benzene dimer interaction.  相似文献   

12.
Weak, medium, and strong charge-transfer (CT) complexes containing various electron donors (C(2)H(4), C(2)H(2), NH(3), NMe(3), HCN, H(2)O) and acceptors (F(2), Cl(2), BH(3), SO(2)) were investigated at the CCSD(T)/complete basis set (CBS) limit. The nature of the stabilization for these CT complexes was evaluated on the basis of perturbative NBO calculations and DFT-SAPT/CBS calculations. The structure of all of the complexes was determined by the counterpoise-corrected gradient optimization performed at the MP2/cc-pVTZ level, and most of complexes possess a linear-like contact structure. The total stabilization energies lie between 1 and 55 kcal/mol and the strongest complexes contain BH(3) as an electron acceptor. When ordering the electron donors and electron acceptors on the basis of these energies, we obtain the same order as that based on the perturbative E2 charge-transfer energies, which provides evidence that the charge-transfer term is the dominant energy contribution. The CCSD(T) correction term, defined as the difference between the CCSD(T) and MP2 interaction energies, is mostly small, which allows the investigation of the CT complexes of this type at the "cheap" MP2/CBS level. In the case of weak and medium CT complexes (with stabilization energy smaller than about 15 kcal/mol), the dominant stabilization originates in the electrostatic term; the dispersion as well as induction and δ(HF) terms covering the CT energy contribution are, however, important as well. For strong CT complexes, induction energy is the second (after electrostatic) most important energy term. The role of the induction and δ(HF) terms is unique and characteristic for CT complexes. For all CT complexes, the CCSD(T)/CBS and DFT-SAPT/CBS stabilization energies are comparable, and surprisingly, it is true even for very strong CT complexes with stabilization energy close to 50 kcal/mol characteristic by substantial charge transfer (more than 0.3 e). It is thus possible to conclude that perturbative DFT-SAPT analysis is robust enough to be applied even for dative-like complexes with substantial charge transfer.  相似文献   

13.
The MP2 complete basis set (CBS) limit for the binding energy of the two low-lying water octamer isomers of D2d and S4 symmetry is estimated at -72.7+/-0.4 kcal/mol using the family of augmented correlation-consistent orbital basis sets of double through quintuple zeta quality. The largest MP2 calculation with the augmented quintuple zeta (aug-cc-pV5Z) basis set produced binding energies of -73.70 (D2d) and -73.67 kcal/mol (S4). The effects of higher correlation, computed at the CCSD(T) level of theory, are estimated at <0.1 kcal/mol. The newly established MP2/CBS limit for the water octamer is reproduced quite accurately by the newly developed all atom polarizable, flexible interaction potential (TTM2-F). The TTM2-F binding energies of -73.21 (D2d) and -73.24 kcal/mol (S4) for the two isomers are just 0.5 kcal/mol (or 0.7%) larger than the MP2/CBS limit.  相似文献   

14.
The popular method of calculating the noncovalent interaction energies at the coupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] theory level in the complete basis set (CBS) limit was to add a CCSD(T) correction term to the CBS second-order Møller-Plesset perturbation theory (MP2). The CCSD(T) correction term is the difference between the CCSD(T) and MP2 interaction energies evaluated in a medium basis set. However, the CCSD(T) calculations with the medium basis sets are still very expensive for systems with more than 30 atoms. Comparatively, the domain-based local pair natural orbital coupled-cluster method [DLPNO-CCSD(T)] can be applied to large systems with over 1,000 atoms. Considering both the computational accuracy and efficiency, in this work, we propose a new scheme to calculate the CCSD(T)/CBS interaction energies. In this scheme, the MP2/CBS term keeps intact and the CCSD(T) correction term is replaced by a DLPNO-CCSD(T) correction term which is the difference between the DLPNO-CCSD(T) and DLPNO-MP2 interaction energies evaluated in a medium basis set. The interaction energies of the noncovalent systems in the S22, HSG, HBC6, NBC10, and S66 databases were recalculated employing this new scheme. The consistent and tight settings of the truncation parameters for DLPNO-CCSD(T) and DLPNO-MP2 in this noncanonical CCSD(T)/CBS calculations lead to the maximum absolute deviation and root-mean-square deviation from the canonical CCSD(T)/CBS interaction energies of less than or equal to 0.28 kcal/mol and 0.09 kcal/mol, respectively. The high accuracy and low cost of this new computational scheme make it an excellent candidate for the study of large noncovalent systems.  相似文献   

15.
The MP2 (the second-order M?ller-Plesset calculation) and CCSD(T) (coupled cluster calculation with single and double substitutions with noniterative triple excitations) interaction energies of all-trans n-alkane dimers were calculated using Dunning's [J. Chem. Phys. 90, 1007 (1989)] correlation consistent basis sets. The estimated MP2 interaction energies of methane, ethane, and propane dimers at the basis set limit [EMP2(limit)] by the method of Helgaker et al. [J. Chem. Phys. 106, 9639 (1997)] from the MP2/aug-cc-pVXZ (X=D and T) level interaction energies are very close to those estimated from the MP2/aug-cc-pVXZ (X=T and Q) level interaction energies. The estimated EMP2(limit) values of n-butane to n-heptane dimers from the MP2/cc-pVXZ (X=D and T) level interaction energies are very close to those from the MP2/aug-cc-pVXZ (X=D and T) ones. The EMP2(limit) values estimated by Feller's [J. Chem. Phys. 96, 6104 (1992)] method from the MP2/cc-pVXZ (X=D, T, and Q) level interaction energies are close to those estimated by the method of Helgaker et al. from the MP2/cc-pVXZ (X=T and Q) ones. The estimated EMP2(limit) values by the method of Helgaker et al. using the aug-cc-pVXZ (X=D and T) are close to these values. The estimated EMP2(limit) of the methane, ethane, propane, n-butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane dimers by the method of Helgaker et al. are -0.48, -1.35, -2.08, -2.97, -3.92, -4.91, -5.96, -6.68, -7.75, and -8.75 kcal/mol, respectively. Effects of electron correlation beyond MP2 are not large. The estimated CCSD(T) interaction energies of the methane, ethane, propane, and n-butane dimers at the basis set limit by the method of Helgaker et al. (-0.41, -1.22, -1.87, and -2.74 kcal/mol, respectively) from the CCSD(T)/cc-pVXZ (X=D and T) level interaction energies are close to the EMP2(limit) obtained using the same basis sets. The estimated EMP2(limit) values of the ten dimers were fitted to the form m0+m1X (X is 1 for methane, 2 for ethane, etc.). The obtained m0 and m1 (0.595 and -0.926 kcal/mol) show that the interactions between long n-alkane chains are significant. Analysis of basis set effects shows that cc-pVXZ (X=T, Q, or 5), aug-cc-pVXZ (X=D, T, Q, or 5) basis set, or 6-311G** basis set augmented with diffuse polarization function is necessary for quantitative evaluation of the interaction energies between n-alkane chains.  相似文献   

16.
A series of MP2 and CCSD(T) computations have been carried out with correlation consistent basis sets as large as aug-cc-pV5Z to determine the intrinsic equatorial-axial conformational preference of CH(3)-, F-, OCH(3)-, and OH-substituted cyclohexane and tetrahydropyran rings. The high-accuracy relative electronic energies reported here shed new light on the intrinsic energetics of these cyclic prototypes for the anomeric effect. At the CCSD(T) complete basis set (CBS) limit, the energy of the equatorial conformation relative to the axial position (DeltaE (CBS)(CCSD(T))) is -1.75, -0.20, -0.21, and -0.56 kcal mol(-1) in methyl-, fluoro-, methoxy-, and hydroxycyclohexane, respectively, while DeltaE(CBS)(CCSD(T) is -2.83, +2.45, +1.27, and +0.86 kcal mol(-1) for 2-methyl-, 2-fluoro-, 2-methoxy-, and 2-hydroxytetrahydropyran, respectively. Note that the equatorial and axial conformers are nearly electronically isoenergetic in both fluoro- and methoxycyclohexane. For all eight cyclic species, a zero-point vibrational energy correction decreases Delta by a few tenths of a kilocalorie per mole. Relative energies obtained with popular methods and basis sets are unreliable, including Hartree-Fock theory, the B3LYP density functional, and the 6-31G and 6-311G families of split-valence basis sets. Even with the massive pentuple-zeta basis sets, the HF and B3LYP methods substantially overestimate the stability of the equatorial conformers (by as much as 0.99 and 0.73 kcal mol(-1), respectively, for 2-methoxytetrahydropyran). Only because of a consistent cancellation of errors do these popular approaches sometimes provide reasonable estimates of the anomeric effect.  相似文献   

17.
The structures of seven gas phase identity S(N)2 reactions of the form CH(3)X + X(-) have been characterized with seven distinct theoretical methods: RHF, B3LYP, BLYP, BP86, MP2, CCSD, and CCSD(T), in conjunction with basis sets of double and triple zeta quality. Additionally, the energetics of said reactions have been definitively computed using focal point analyses utilizing extrapolation to the one-particle limit for the Hartree-Fock and MP2 energies using basis sets of up to aug-cc-pV5Z quality, inclusion of higher order correlation effects [CCSD and CCSD(T)] with basis sets of aug-cc-pVTZ quality, and additional auxiliary terms for core correlation and scalar relativistic effects. Final net activation barriers for the reactions are E(b)(F,F)= -0.8, E(b)(Cl,Cl)= 1.6, E(b)(CN,CN)= 28.7, E(b)(OH,OH)= 14.3, E(b)(SH,SH)= 13.8, E(b)(NH2,NH2)= 28.6, and E(b)(PH2,PH2)= 25.7 kcal mol(-1). General trends in the energetics, specifically the performance of the density functionals, and the component energies of the focal point analyses are discussed. The utility of classic Marcus theory as a technique for barrier predictions has been carefully analyzed. The standard Marcus theory results show disparities of up to 9 kcal mol(-1) with respect to explicitly computed results. However, when alternative approaches to Marcus theory, independent of the well-depths, are considered, excellent performance is achieved, with the largest deviations being under 3 kcal mol(-1).  相似文献   

18.
High-level ab initio calculations at the CCSD(T)/aug-cc-pVTZ//MP2/aug(d,p)-6-311G(d,p) level were employed to investigate the cooperative CH/pi effects between the pi face of benzene and several modeled saturated hydrocarbons, propane, isobutane, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cyclopentane, cyclooctane, and bicyclo[2.2.2]octane. In all cases, multiple C-H groups (2-4) are found to interact with the pi face of benzene, with one C-H group pointing close to the center of the benzene ring. The geometries of these complexes are governed predominantly by electrostatic interaction between the interacting systems. The calculated interaction energies (10-14 kJ mol(-1)) are 2-3 times larger than that of the prototypical methane-benzene complex. The trends of geometries, interaction energies, binding properties, as well as electron-density topological properties were analyzed. The calculated interaction energies correlate well with the polarizabilities of the hydrocarbons. AIM analysis confirms the hydrogen-bonded nature of the CH/pi interactions. Significant changes in proton chemical shift and stretching frequency (blue shift) are predicted for the ring C-H bond in these complexes.  相似文献   

19.
The phenol...argon complex was studied by means of various high level ab initio quantum mechanics methods and high resolution threshold ionization spectroscopy. The structure and stabilization energy of different conformers were determined. Stabilization energy of van der Waals bonded and H-bonded PhOH...Ar complex determined at CCSD(T) complete basis set (CBS) level for CP-RI-MP2/cc-pVTZ/Ar aug-cc-pVTZ geometries amount to 434 and 285 cm(-1). The CCSD(T)/CBS were constructed either as a sum of MP2/CBS interaction energy and CCSD(T) correction term [difference between CCSD(T) and MP2 correlation energies determined with medium basis set] or directly from CCSD(T)/aug-cc-pVDZ and aug-cc-pVTZ energies. Both schemes provide very similar values. Harmonic vibrational analysis revealed that the H-bonded structure does not represent energy minimum but first order transition structure. The respective imaginary vibrational mode (16 cm(-1)) connects two possible argon locations -- above and below the phenol aromatic ring. Including the DeltaZPVE, we obtained stabilization enthalpy at 0 K of 389 cm(-1). This value is marginally higher (25-35 cm(-1), 0.07-0.10 kcal/mol) than the experimental value. The determination of DeltaZPVE constitutes the most significant error and possible improvements should come from more accurate evaluation of the (nonharmonic) vibrational frequencies.  相似文献   

20.
Thermochemical data calculated using ab initio molecular orbital theory are reported for 16 BxNxHy compounds with x = 2, 3 and y > or = 2x. Accurate gas-phase heats of formation were obtained using coupled cluster with single and double excitations and perturbative triples (CCSD(T)) valence electron calculations extrapolated to the complete basis set (CBS) limit with additional corrections including core/valence, scalar relativistic, and spin-orbit corrections to predict the atomization energies and scaled harmonic frequencies to correct for zero point and thermal energies and estimate entropies. Computationally cheaper calculations were also performed using the G3MP2 and G3B3 variants of the Gaussian 03 method, as well as density functional theory (DFT) using the B3LYP functional. The G3MP2 heats of formation are too positive by up to approximately 6 kcal/mol as compared with CCSD(T)/CBS values. The more expensive G3B3 method predicts heats of formation that are too negative as compared with the CCSD(T)/CBS values by up to 3-4 kcal/mol. DFT using the B3LYP functional and 6-311+G** basis set predict isodesmic reaction energies to within a few kcal/mol compared with the CCSD(T)/CBS method so isodesmic reactions involving BN compounds and the analogous hydrocarbons can be used to estimate heats of formation. Heats of formation of c-B3N3H12 and c-B3N3H6 are -95.5 and -115.5 kcal/mol at 298 K, respectively, using our best calculated CCSD(T)/CBS approach. The experimental value for c-B3N3H6 appears to be approximately 7 kcal/mol too negative. Enthalpies, entropies, and free energies are calculated for many dehydrocoupling and dehydrogenation reactions that convert BNH6 to alicyclic and cyclic oligomers and H2(g). Generally, the reactions are highly exothermic and exergonic as well because of the release of 1 or more equivalents of H2(g). For c-B3N3H12 and c-B3N3H6, available experimental data for sublimation and vaporization lead to estimates of their condensed phase 298 K heats of formation: DeltaHf degrees [c-B3N3H12(s)] = -124 kcal/mol and DeltaHf degrees [c-B3N3H6(l)] = -123 kcal/mol. The reaction thermochemistries for the dehydrocoupling of BNH6(s) to c-B3N3H12(s) and the dehydrogenation of c-B3N3H12(s) to c-B3N3H6(l) are much less exothermic compared with the gas-phase reactions due to intermolecular forces which decrease in the order BNH6 > cyclo-B3N3H12 > cyclo-B3N3H6. The condensed phase reaction free energies are less negative compared with the gas-phase reactions but are still too favorable for BNH6 to be regenerated from either c-B3N3H12 or c-B3N3H6 by just an overpressure of H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号