首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Aqueous solutions of bismuth(III) nitrilotriacetates BiNta · 2H2O and M3Bi(Nta)2 ·nH2O (M = Na, K, Rb, Cs, NH4, CN3H6, n = 0–4) and the K[Bi(Edta)(Tu)2] complex (Edta4– is the anion of ethylenediaminetetraacetic acid, Tu is thiocarbamide) are studied by the 1H NMR method at room temperature in the pH interval from 2 to 11. The formation of two types of bismuth nitrilotriacetate complexes in solutions is established. They are characterized by the presence (type 1) or absence (type 2) of the Bi–N bond. Their ratio, depending on the composition and pH of the solution, is determined. The K[Bi(Edta)(Tu)2] compound in solutions occurs as one form. The pH values at which the substance begins to decompose are determined for each compound.  相似文献   

2.
Hao  Xiang  Wei  Yongge  Zhang  Shiwei 《Transition Metal Chemistry》2001,26(4-5):384-387
The compound (Hql)2[Fe2(cit)2(H2O)2]·4H2O (1) [ql = quinoline, cit4– = C(O)(CO 2)(CH2CO 2)2], prepared by reacting ferric nitrate, sodium citrate and quinoline in a molar ratio of 1:1:1 in aqueous solution, was characterized by density measurements, elementary analysis, i.r., X-ray crystallography and magnetic measurements. The X-ray crystallography results reveal that the molecule (1) consists of a binuclear iron(III) citrate anionic complex [Fe2(cit)2(H2O)2]2– and two protonated quinolines [Hql]+. The anionic complex has a centro-symmetric structure, in which two Fe3+ ions are bridged by two 2-alkoxo groups of the two deprotonated citrate ligands. The other coordination sites of the two slightly distorted octahedra are completed by all the carboxylate groups of the two cit4– ligands in a monodentate mode, and two coordinated water molecules. Magnetic measurements indicate that the two Fe3+ ions are antiferromagnetically coupled below 200 K. A least-squares fit of variable-temperature (1.5–291 K) molar susceptibility data to a dimer model gave the coupling constant J/k = –6.35(7) K and Landé factor g = 2.052(9), where the spin-only Heisenberg–Dirac–van Vleck Hamiltonian is expressed as H = –2J S 1 S 2.  相似文献   

3.
The structural behavior of water microimpurities in n-alkanols (C1-C7) is considered by using our and literature data on the bulk properties of infinitely dilute solutions of H2O in the above organic solvents at 278.15 K, 298.15 K, and 318.15 K. Volume effects of water solution in hypothetical alkanols HOH (pseudowater) and H(CH2)OH (pseudomethanol) with molar volumes corresponding to volume effects in water and methanol in pure liquid states have been evaluated. The behavior of water in methanol, which is distinct from the behavior of other H2O—n-alkanol systems, is of configurational nature and is associated with the unique molecular structure of this alcohol (i.e., with the absence of hydrocarbon chains in its molecules) and also with steric peculiarities of the arrangement of solute molecules in the structural matrix of the solvent (so-called “edge effect”).Original Russian Text Copyright © 2004 by E. V. Ivanov, V. K. Abrosimov, and E. Yu. Lebedeva__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 5, pp. 862–869, September–October, 2004.  相似文献   

4.
Mixed-chelate complexes of ruthenium have been synthesized using tridentate Schiff-base ligands (TDLs) derived from condensation of 2-aminophenol or 2-aminobenzoic acid with aldehydes (salicyldehyde, 2-pyridinecarboxaldehyde), and tmeda (tetramethylethylenediamine). [RuIII(hpsd)(tmeda)(H2O)]+ (1), [RuIII(hppc)(tmeda)(H2O)]2+ (2), [RuIII(cpsd)(tmeda)(H2O)]+ (3) and [RuIII(cppc)(tmeda)(H2O)]2+ (4) complexes (where hpsd2− = N-(hydroxyphenyl)salicylaldiminato); hppc = N-(2-hydroxyphenylpyridine-2-carboxaldiminato); cpsd2− = (N-(2-carboxyphenyl)salicylaldiminato); cppc = N-2-carboxyphenylpyridine-2-carboxaldiminato) were characterized by microanalysis, spectral (IR and UV–vis), conductance, magnetic moment and electrochemical studies. Complexes 14 catalyzed the epoxidation of cyclohexene, styrene, 4-chlorostyrene, 4-methylstyrene, 4-methoxystyrene, 4-nitrostyrene, cis- and trans-stilbenes effectively at ambient temperature using tert-butylhydroperoxide (t-BuOOH) as terminal oxidant. On the basis of Hammett correlation (log krel vs. σ+) and product analysis, a mechanism involving intermediacy of a [Ru–O–OBut] radicaloid species is proposed for the catalytic epoxidation process.  相似文献   

5.
Chlorodiphenylphosphine and 2,2′-biphenylylenephosphorochloridite react with 2-hydroxy-2′-(1,4-bisoxo-6-hexanol)-1,1′-biphenyl to yield the new α,ω-bis(phosphorus-donor)-polyether ligands, 2-Ph2PO(CH2CH2O)2–C12H8-2′-OPPh2 (1) and 2-(2,2′-O2C12H8)P(CH2CH2O)2–C12H8-2′-P(2,2′-O2C12H8) (2). These ligands react with Mo(CO)4(nbd) to form the monomeric metallacrown ethers, cis-Mo(CO)4{2-Ph2PO(CH2CH2O)2–C12H8-2′-OPPh2} (cis-3) and cis-Mo(CO)4{2-(2,2′-O2C12H8)P(CH2CH2O)2–C12H8-2′-P(2,2′-O2C12H8)} (cis-4), in good yields. The X-ray crystal structures of cis-3 and cis-4 are significantly different, especially in the conformation of the metal center and the adjacent ethylene group. The very different 13C-NMR coordination chemical shifts of this ethylene group in cis-3 and cis-4 suggest that the solution conformations of these metallacrown ethers are also quite different. Both metallacrown ethers undergo cistrans isomerization in the presence of HgCl2. Although the cistrans equilibrium constants for the isomerization reactions are nearly identical, the isomerization of cis-3 is more rapid. Phenyl lithium reacts with cis-3 to form the corresponding benzoyl complexes but does not react with either trans-3 or cis-4. Both the slower rate of cistrans isomerization of cis-4 and its lack of reaction with PhLi are consistent with weaker interactions between the hard metal cations and the carbonyl oxygens in both trans-3 and cis-4.  相似文献   

6.
The crystal and molecular structure of potassium aquapentachloroiridate(III) (K2[Ir(H2O)Cl5]) was reported. The [Ir(H2O)Cl5]2− anions are nearly octahedral, the axial Ir–Cl bond (2.322(2) Å) being shorter than the equatorial ones (2.346(2)–2.360(2) Å); the Ir–O bond length is 2.090(4) Å. Ir(III) chloride complexes with 2,2′-bipyridine (LL = bpy) or 1,10-phenanthroline (LL = phen), of the general formulae K[Ir(LL)Cl4] and cis-[Ir(LL)2Cl2]Cl, were studied by far-IR and 1H–13C, 1H–15N HMBC/HMQC/HSQC–NMR. High-frequency 1H NMR coordination shifts (Δ1Hcoord = δ1Hcomplex − δ1Hligand; max. ca. +1 ppm) were noted for [Ir(LL)Cl4] anions, while for cis-[Ir(LL)2Cl2]+ cations they had variable sign and magnitude (max. ca. ±1 ppm); they were dependent on the proton position, being mostly expressed for the nitrogen-adjacent hydrogens (H(6) for bpy, H(2) for phen). 13C NMR signals were high-frequency shifted (by max. ca. 8 ppm), whereas all 15N nuclei were shifted to the lower frequency (by ca. 105–120 ppm). The experimental 1H, 13C, 15N NMR chemical shifts were reproduced by semi-empirical quantum-chemical calculations (B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*).  相似文献   

7.
The geometric parameters of dl- and d-tetranuclear iron(III) tartrates [Fe4(d-L)2(l-L)2(H2O)8]4–and [Fe4(d-L)4(H2O)8]4–(H4L is tartaric acid) were optimized using the molecular mechanics method (MIND program, Dashevskii–Plyamovatyi model).  相似文献   

8.
Complexation in the Co(II)–H6X–H2O, Ni(II)–H6X–H2O, and Co(II)–Ni(II)–H6X–H2O systems (H6X is nitrilotrimethylenephosphonic acid) was studied by spectrophotometry. The formation of binuclear complexonates Ni2H2X · 7H2O, Co2H2X · 5H2O, and NiCoH2X · 6H2O was demonstrated. These compounds were isolated from the solution, their composition was determined, the thermal stability was studied, and the kinetic parameters of dehydration were calculated.  相似文献   

9.
[Mo(CN)4O(H2O)]2– reacts with hydrazine and salicylaldehyde in aqueous solution to give [Mo(CN)3O(salhy)]2– (Hsalhy = salicylaldehydehydrazone), isolated as green (Ph4P)2[Mo(CN)3O(salhy)] · 6H2O. In CHCl3, the product converts within seconds into (Ph4P)2[Mo(CN)3O(salhy)] · H2O · 2CHCl3 yielding microcrystals having a metallic golden sheen. The complexes were characterised by elemental analysis, t.g. and d.t.a., u.v.–vis. absorption, i.r., 1H-n.m.r. spectroscopy and by magnetic susceptibility measurements. The visible spectra in various solvents are dominated by the metal-to-ligand charge-transfer bands with absorption maxima linearly dependent on the Reichardt E T parameter. In halogenated alkanes, the unusual hipsochromic band shift is interpreted in terms of possibile solvent bonding to the metal centre. Cyclic voltammetry indicates that the salt undergoes reversible one electron oxidation with E 1/2 = –0.473 V in DMSO versus ferrocene.  相似文献   

10.
Two new phenol based macroacyclic Schiff base ligands, 2,6-bis({N-[2-(phenylselenato)ethyl]}benzimidoyl)-4-methylphenol (bpebmpH, 1) and 2,6-bis({N-[3-(phenylselenato)propyl]}benzimidoyl)-4-methylphenol (bppbmpH, 2) of the Se2N2O type have been prepared by the condensation of 4-methyl-2,6-dibenzoylphenol (mdbpH) with the appropriate (for specific reactions) phenylselenato(alkyl)amine. These ligands with Cu(II) acetate monohydrate in a 2:1 molar ratio in methanol form complexes of the composition [(C6H2(O)(CH3){(C6H5)CN(CH2)nSe(C6H5)}{(C6H5)CO}2Cu] (3 (n = 2), 4 (n = 3)) with the loss of phenylselenato(alkyl)amine and acetic acid. In both these complexes, one arm of the ligand molecule undergoes hydrolysis, and links with Cu(II) in a bidentate (NO) fashion, as confirmed by single crystal X-ray crystallography of complex 3. The selenium atoms do not form part of the copper(II) distorted square planar coordination sphere which has a trans-CuN2O2 core. The average Cu–N and Cu–O distances are, respectively, 1.973(3) and 1.898(2) Å. The N–Cu–N and O–Cu–O angles are, respectively, 167.4(11)° and 164.5(12)°. The compounds 1–4 have been characterized by elemental analysis, conductivity measurements, mass spectrometry, IR, electronic, 1H and 77Se{1H} NMR spectroscopy and cyclic voltammetry. The interaction of complex 3 with calf thymus DNA has been investigated by a spectrophotometric method and cyclic voltammetry.  相似文献   

11.
Infrared spectra of the title compounds with kröhnkite-type infinite octahedral–tetrahedral chains, K2Me(CrO4)2·2H2O (Me = Mg, Co, Ni, Zn, Cd), are presented in the regions of the uncoupled O–D stretching modes of matrix-isolated HDO molecules (isotopically dilute samples) and water librations. The strengths of the hydrogen bonds are discussed in terms of the respective OwO bond distances, the Me–water interactions (synergetic effect), the proton acceptor capability of the chromate oxygen atoms as deduced from Brown's bond valence sum of the oxygen atoms. The spectroscopic experiments reveal that hydrogen bonds of medium strength are formed in the chromates. The hydrogen bond strengths decrease in the order Cd > Zn > Ni > Co in agreement with the decreasing covalency of the respective Me–OH2 bonds in the same order, i.e. decreasing acidity of the water molecules. The infrared band positions corresponding to the water librations confirm the claim that the hydrogen bonds in K2Cd(CrO4)2·2H2O are stronger than those formed in K2Mg(CrO4)2·2H2O on one hand, and on the other—the hydrogen bonds in K2Ni(CrO4)2·2H2O are stronger than those in K2Co(CrO4)2·2H2O.  相似文献   

12.
A spectrophotometric study of heteroligand chromium(III) complexes with iminodiacetic (H2Ida), N-methyliminodiacetic (H2Mida), N-(-hydroxyethyl)iminodiacetic (H2Heida), nitrilotriacetic (H3Nta), ethylenediaminetetraacetic (H4Edta), and citric acids (H4Cit) showed that complexation in ternary systems depends on the concentrations of the reagents and the pH of the medium. The resulting complexes were [Cr(HIda)(H2Cit)], [Cr(HMida)(H2Cit)], [Cr(HHeida)(H2Cit)], [Cr(HHeida)(HCit)], [Cr(HNta)(H2Cit)], [Cr(HNta)(HCit)]2–, [Cr(Nta)(HCit)]3–, [Cr(HEdta)(HCit)]3–, and [Cr(Edta)(HCit)]4–. The logarithms of their stability constants are 41.97 ± 0.47, 43.54 ± 0.62, 42.32 ± 0.62, 36.34 ± 0.26, 43.70 ± 0.25, 39.75 ± 0.45, 32.93 ± 1.56, 46.46 ± 0.80, and 41.71 ± 0.81 , respectively (I = 0.1 (NaClO 4)).Translated from Koordinatsionnaya Khimiya, Vol. 30, No. 12, 2004, pp. 946–950.Original Russian Text Copyright © 2004 by Kornev, Mikryukova.  相似文献   

13.
Density functional B3LYP method with 6-31++G** basis set is applied to optimize the geometries of the luteolin, water and luteolin–(H2O)n complexes. The vibrational frequencies are also studied at the same level to analyze these complexes. We obtained four steady luteolin–H2O, nine steady luteolin–(H2O)2 and ten steady luteolin–(H2O)3, respectively. Theories of atoms in molecules (AIM) and natural bond orbital (NBO) are used to investigate the hydrogen bonds involved in all the systems. The interaction energies of all the complexes corrected by basis set superposition error, are within −13.7 to −82.5 kJ/mol. The strong hydrogen bonding mainly contribute to the interaction energies, Natural bond orbital analysis is performed to reveal the origin of the interaction. All calculations also indicate that there are strong hydrogen bonding interactions in luteolin–(H2O)n complexes. The OH stretching modes of complexes are red-shifted relative to those of the monomer.  相似文献   

14.
We report the basis set dependencies and the basis set superposition errors for the hydrated complexes of K+ and Na+ ions in relation to the recent studies of the KcsA potassium channel. The basis set superposition errors are estimated by the geometry optimizations at the counterpoise-corrected B3LYP level. The counterpoise optimizations alter the hydration distances by about 0.02–0.03 Å. The enthalpies and free energies for K+ + n(H2O) → [K(H2O)n]+ and Na+ + n(H2O) → [Na(H2O)n]+ (n = 1–6) are compared between the theoretical and experimental values. The results show that the addition of diffuse functions to K, Na, and O species are effective. However, it is also found that the counterpoise corrections using diffuse functions work so as to underestimate the free energies for the complexes with increasing the hydration number. The stabilization energies in aqueous solution are larger for a Na+ ion than for a K+ ion, suggesting the contributions of their dehydration processes to the ion selectivity of the KcsA potassium channel. The changes in coordination distance between the isolated [K(H2O)8]+ and the [K(H2O)8]+ in the KcsA potassium channel indicate the importance of hydrogen bondings between the first hydration shell and the outer hydration shells.  相似文献   

15.
Eu2(BPOPB)3H2O, an europium complex chelated with bis(β-diketone), was synthesized. Its properties have been investigated by absorption spectrum, emission spectrum and luminescence lifetime measurement. The complex displays strong red luminescence upon irradiation at the ligand band around 355 nm, which indicates that the bis-β-diketonate ligand BPOPB is an efficient sensitizer. The Judd–Ofelt parameters obtained from the emission spectrum of Eu2(BPOPB)3H2O have been used to calculate the total spontaneous emission probabilities (A), the radiative lifetime (τrad), the fluorescence branching ratio (β) and the stimulated emission cross-sections (σ). The luminescence lifetimes are determined to be 402 and 169 μs for Eu2(BPOPB)3H2O and Eu(DBM)3(H2O)2, respectively. The relationship between the structures of rare-earth complexes and luminescence lifetimes was analyzed. The radiative properties reveal that Eu2(BPOPB)3H2O is potential to be an efficient luminescent material.  相似文献   

16.
The ligands [Ph2P(O)NP(E)Ph2] (E=S I; E=Se II) can readily be complexed to a range of palladium(II) starting materials affording new six-membered Pd–O–P–N–P–E palladacycles. Hence ligand substitution reaction of the chloride complexes [PdCl2(bipy)] (bipy=2,2′-bipyridine), [{Pd(μ-Cl)(L–L)}2] (HL–L=C9H13N or C12H13N), [{Pd(μ-Cl)Cl(PMe2Ph)}2] or [PdCl2(PR3)2] [PR3=PPh3; 2PR3=Ph2PCH2CH2PPh2or cis-Ph2PCH=CHPPh2] with either I (or II) in thf or CH3OH gave [Pd{Ph2P(O)NP(E)Ph2-O,E}(bipy)]PF6, [Pd{Ph2P(O)NP(E)Ph2-O,E}(L–L)], [Pd{Ph2P(O)NP(E)Ph2-O,E}Cl(PMe2Ph)] or [Pd{Ph2P(O)NP(E)Ph2-O,E} (PR3)2]PF6 in good yields. All compounds described have been characterised by a combination of multinuclear NMR [31 P{1 H} and 1 H] and IR spectroscopy and microanalysis. The molecular structures of five complexes containing the selenium ligand II have been determined by single-crystal X-ray crystallography. Three different ring conformations were observed, a pseudo-butterfly, hinge and in the case of all three PR3 complexes, pseudo-boat conformations. Within the Pd–O–P–N–P–Se rings there is evidence for π-electron delocalisation.  相似文献   

17.
The aqua complex of podand 1,2-bis(2-(o-hydroxyphenoxy)ethyloxy)ethane (L) with strontium perchlorate of the composition [Sr(ClO4)L(H2O)2]+ · ClO4 · H2O (I) was synthesized and studied using X-ray diffraction analysis: space group P21/c, a = 16.195 Å, b = 11.382 Å, c = 16.646 Å, = 117.01°, Z = 4. The structure was solved by direct method and anisotropically refined by the full-matrix least-squares method to R = 0.069 for 4278 independent reflections (CAD4 autodiffractometer, MoK ). Structure I contains complex cation [Sr(ClO4)L(H2O)2]+ of the host–guest type. The Sr2+ cation (coordination number 9) is coordinated to all six O atoms of the L podand, O atom of a disordered ClO4 ligand, and two O atoms of two water molecules. The coordination polyhedron of Sr2+ is irregular; in a rough approximation, it can be described as a face-centered cube. The crystal structure of I contains an infinite three-dimensional network of the O–H···O hydrogen bonds joining the complex cations, ClO4 anions, and molecules of crystallization water.  相似文献   

18.
Summary The crystal structure of the tetraethylammonium salt of [ReO(H2O)(CN)4] has been determined from threedimensional x-ray diffraction data. The light blue crystals are monoclinic, space group P21/m witha=8.760(1),b=9.518(5),c=11.718(1) Å, =102.63(1)o with two molecules per unit cell. The final R value using 2009 observed reflections and anisotropic thermal parameters for all the non-hydrogen atoms was 0.038. The [ReO(H2O)(CN)4] ion has a distorted octahedral geometry with the rhenium atom displaced by 0.30 Å out of the plane formed by the four carbon atoms of the cyano ligands towards the oxo ligand. Bond distances: Re=O=1.667(8), Re–OH2=2.142(7) and Re–C (average)=2.11(1) Å.  相似文献   

19.
The magnetic properties of several LiFeO2polymorphs (different cation arrangements in a cubic close-packed oxygen structure) have been examined by magnetic susceptibility measurements and Mössbauer spectroscopy. Samples with relatively low ferromagnetic impurity levels have been obtained by hydrothermal reaction of FeCl3·6H2O or FeOOH with LiOH·H2O and subsequent annealing in air.α-NaFeO2with no detectable ferromagnetic impurity has been obtained by hydrothermal reaction ofα-FeOOH and NaOH. Whileα-NaFeO2revealed only one anomaly at 11 K (Néel point) in the magnetic susceptibility–temperature curves, each LiFeO2sample shows two anomalies (40–50 and 90–280 K). Mössbauer data confirm that iron is present in the high-spin 3+ state according to the values of the internal field at 4.2 K and isomer shifts at 300 K. The relationship between the cation arrangements and the Néel temperature is discussed for LiFeO2.  相似文献   

20.
Summary Organochromium complexes, [CrRL(H2O)]2+] (L = 1,4,8,12-tetraazacyclopentadecane; R = 1°- or 2°-alkyl, or para-substituted benzyl), are oxidized to [CrRL(H2O)]3+, which rapidly decomposes (k 3 > 102 s–1) by homolysis of the Cr-C bond. Rate constants of the oxidation of these complexes by [IrCl6]2– range from 2.20 × 10–1 (R = Me) to 4.60 × 105 (R = 4-MeC6H4CH2)dm3 mol–1 s–1. A very negative reaction constant (–4.3) is found for the oxidation of para-substituted benzlchromium(III) complexes which, in conjunction with the results of product analysis, indicates a [CrIII/R.] type transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号