首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
合成了稀土(钬, Ho)-氨基酸(甘氨酸, C2H5O2N)二元配合物Ho(NO3)3(C2H5O2N)4·H2O, 并且通过化学分析、元素分析和红外(IR)光谱对配合物进行了表征. 用高精度全自动绝热量热仪, 测定了该配合物在80-390 K温度区间的定压摩尔热容(Cp,m). 利用实验测定的热容数据, 采用最小二乘法, 将热容曲线上热容峰以外的两段平滑区的摩尔热容对折合温度进行拟合, 建立了热容随折合温度变化的多项式方程. 根据热容与焓、熵的热力学关系,计算出了配合物在80-390 K温度区间内,每隔5 K,相对于298.15 K的摩尔热力学函数(HT,m-H298.15,m)和(ST,m-S298.15,m). 通过热容曲线分析, 计算出了350 K附近转变过程的焓变(ΔtrsHm)和熵变(ΔtrsSm). 用差示扫描量热法(DSC)测定了配合物的热稳定性.  相似文献   

2.
利用精密绝热热量仪测定了化合物配合物Zn(Met)3(NO3)2·H2O (s) (Met=L-α-蛋氨酸)在78-371 K温区的摩尔热容. 通过热容曲线解析, 得到了该配合物的起始脱水温度为TD=325.10 K. 将该温区的摩尔热容实验值用最小二乘法拟合得到了摩尔热容(Cp)对约化温度(T)的多项式方程, 由此计算得到了配合物的舒平热容值和热力学函数值. 基于设计的热化学循环, 选择100 mL of 2 mol·L-1 HCl为量热溶剂, 利用等温环境溶解-反应热量计, 得到了298.15 K配合物的标准摩尔生成焓为ΔfHm0[Zn(Met)3(NO3)2·H2O(s),s]=-(1472.65±0.76) J·mol-1.  相似文献   

3.
Sm(Val)Cl3·6H2O低温热容及热化学性质   总被引:3,自引:0,他引:3  
采用精密绝热量热计测定了稀土氨基酸配合物[Sm(Val)Cl3·6H2O]在80-376 K温区的热容,从实验热容值计算出了热力学函数(HT-H298.15和ST-S398.15).在308 K附近,配合物的热容出现一个大的跳跃.可能是其玻璃化转变所致.对该配合物进行热重测试,得到了其可能的分解机理.  相似文献   

4.
采用精密绝热量热计测定了稀土氨基酸配合物[Sm(Val)Cl3·6H2O]在80-376 K温区的热容, 从实验热容值计算出了热力学函数(HT-H298.15和ST-S298.15). 在308 K附近, 配合物的热容出现一个大的跳跃, 可能是其玻璃化转变所致. 对该配合物进行热重测试, 得到了其可能的分解机理.  相似文献   

5.
通过精密自动绝热热量计测定了配合物Zn(His)SO4*H2O(s)在78~390K温区的摩尔热容,由热容曲线得到其起始脱水温度328.90K;用最小二乘法拟合得到摩尔热容(Cp,m)对温度(T)的多项式方程,并在此基础上计算了它的各种热力学函数.此外,研究了其在惰性气氛下的热分解过程.  相似文献   

6.
利用精密自动绝热热量计直接测定了配合物Zn(Phe)(NO3)2·H2O(s) (Phe:苯丙氨酸)在78-370 K温区的摩尔热容. 通过热容曲线的解析得到该配合物的起始脱水温度为, T0=(324.27±0.37) K. 将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp, m)对温度(T)的多项式方程, 并且在此基础上计算出了它的舒平热容值和各种热力学函数值. 依据Hess定律, 通过设计热化学循环, 选择体积为100 mL浓度为2 mol·L-1 的盐酸作为量热溶剂, 利用等温环境溶解-反应热量计分别测定混合物{ZnSO4·7H2O(s)+2NaNO3(s)+L-Phe(s)}和{Zn(Phe)(NO3)2·H2O(s)+Na2SO4(s)}的溶解焓为, ⊿dH0m,1 =(69.42±0.05) kJ·mol-1, ⊿dH0 m,2 =(48.14±0.04) kJ·mol-1, 进而计算出该配合物的标准摩尔生成焓为, ⊿fH0m =-(1363.10±3.52) kJ·mol-1. 另外, 利用紫外-可见(UV-Vis)光谱和折光指数(refractiveindex)的测量结果检验了所设计的热化学循环的可靠性.  相似文献   

7.
本文合成了Lu(NO3)3 (C2H5O2N)4·H2O,用红外和元素分析对其进行了表征.用高精度全自动绝热量热仪,测定了该配合物在80~ 382 K温区的热容,利用实验热容数据,根据热容与焓、熵的热力学关系,求出了配合物在85~ 350 K温区内每隔5K相对于298.15K的标准热力学函数[HT-H29815]和[ST-S29815].在80~350 K温度区间内,配合物的热容随温度升高而增大,没有相转移点和热力学吸收峰的出现,该配合物在此温度区间内是稳定存在的.  相似文献   

8.
本文用全自动绝热量热计从13到300K测定了两种稀土元素异硫氰酸盐七水合物,La(NCS)_3·7H_2O和Ce(NCS)_3·7H_2O的热容。较详细描述了量热计结构和操作。在实验温区对两种化合物均未观察到明显的热异常现象。根据实验热容数据,用最小二乘拟合方法得到了计算这两种化合物13—300K热容值的多项式方程。13K以下的热容值用Debye和Einstein热容函数进行了估算。计算出了O—300K的标准热力学函数,标准生成Gibbs能也被计算出来。  相似文献   

9.
合成了两种稀土高氯酸盐与L 脯氨酸配合物的晶体.经热重、差热、化学分析及对比有关文献,知其组成是[Pr2(L Pro)6(H2O)4](ClO4)6和[Er2(L Pro)6(H2O)4](ClO4)6,质量分数为99.24%和98.20%.选用RE(NO3)3•6H2O(RE=Pr,Er)、L Pro、NaClO4•H2O和NaNO3作辅助物,使用具有恒温环境的反应热量计,以2 mol•L-1 HCl作溶剂,分别测定了[2RE(NO3)3•6H2O+6L Pro+6NaClO4•H2O]和{[RE2(L PrO)6(H2O)4](ClO4)6+6NaNO3}在298.15 K时的溶解热.设计一热化学循环求得化学反应的反应焓ΔrHm分别是:63.904 kJ•mol-1和91.017 kJ•mol-1,经计算得配合物[RE2(L Pro)6(H2O)4](ClO4)6(s)在298.15 K时的标准生成焓ΔfHm(298.15 K)分别是-6 594.78 kJ•mol-1和-6 532.87 kJ•mol-1.  相似文献   

10.
近几十年来,烟酸盐类化合物或配合物由于优越的吸收率高和无毒副作用等特点使其在化妆品、药品和食品等领域作为营养添加剂具有重要应用前景。然而,这类化合物的基础热力学数据极其缺乏,从而限制了这类化合物的理论研究和应用开发的深入开展。为此,本论文利用室温固相合成方法和球磨技术合成了一种新化合物Cu(Nic)2•H2O(s),利用化学分析、元素分析、FTIR和X-射线粉末衍射技术表征了它的结构和组成,利用精密自动绝热热量计准确地测量了它在78-400 K温区的摩尔热容。在热容曲线的T = 326-346 K温区观察到一个明显的固-液相变过程。利用相变温区三次重复实验热容的测量结果确定了此相变过程的峰温、相变焓和相变熵分别为:Tfus=(341.290 ±0.873) K, DfusHm=(13.582±0.012) kJ×mol-1, DfusSm=(39.797±0.067) J×K-1×mol-1。通过最小二乘法将相变前和相变后的热容实验值分别拟合成了热容对温度的两个多项式方程。通过热容多项式方程的数值积分,得到了这个化合物的舒平热容值和相对于298.15 K的各种热力学函数值,并且将每隔5 K的热力学函数值列成了表格。  相似文献   

11.
利用精密自动绝热热量计直接测定了配合物Zn(Met)SO4·H2O(s)在78~370K温区的摩尔热容.通过热容曲线的解析得到该配合物的起始脱水温度为T0=329.50K.将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp,m)对温度(T)的多项式方程,并且在此基础上计算出了它的舒平热容值和各种热力学函数值.依据Hess定律,通过设计热化学循环,选择体积为100cm3、浓度为2mol·L-1的盐酸作为量热溶剂,利用等温环境溶解-反应热量计,测定和推算出该配合物的标准摩尔生成焓为?fHms=-(2069.30±0.74)kJ·mol-1.  相似文献   

12.
合成了标题配合物,测定了其晶体在80~385 K温度范围的等压摩尔热容,低温区间的绝热量热和差示扫描量热均发现配合物在220K和245K附近存在固-固相转变,推测其机理可能是配合物中高氯酸根的重取向运动不同阶段所造成;根据实验热容数据和热力学公式,计算出配合物在80~385 K温度区域内相对于298.15K的标准热力学函数[HT-H298.15]和[ST-S298.15],根据热容测定数据计算出该相变的焓变和熵变。用热重法检测了配合物的热稳定性并推测其热分解机理。这两个低温区相变过程的发现,使开发此类配合物作为新低温相变材料成为可能。  相似文献   

13.
利用精密自动绝热热量计测定了Nd(Gly)2Cl3·3H2O在80-357K和Pr(Ala)3Cl3·3H2O在80-374K温区的热容. 根据两个化合物的热容计算出了相对于参考温度298.15K的热力学函数(HT?H298.15)和(ST?S298.15). 根据热重(TG)分析结果, 提出了这两个稀土化合物可能的热分解机理. 利用溶解-反应恒温热量计测定相关化合物的溶解焓并设计盖斯热化学循环, 计算出了两个化合物的标准摩尔生成焓.  相似文献   

14.
《化学通报》2002,65(12):849-853
研究了壳聚糖对Fe2+的吸附行为,并进行了条件优化,得到了较为理想的合成产物.通过红外光谱和紫外光谱进行了表征,进而用化学分析、元素分析确定了配合物的组成,并利用TG-DSC分析,采用常用的22种机理函数,对非等温动力学数据进行了线性回归拟合处理,求得了配合物主要分解阶段热动力学最可机理函数和动力学参数(E和A).  相似文献   

15.
合成了两种稀土高氯酸盐与L-脯氨酸配合物的晶体.经热重、差热、化学分析及对比有关文献,知其组成 是[Pr2(L-Pro)6(H2O)4](ClO4)6和[Er2(L-PrO)6(H2O)4](ClO4)6,质量分数为99.24%和98.20%.选用RE(NO3)· 6H2O(RE=Pr,Er)、LPro、NaClO4·H2O和 NaNO3作辅助物,使用具有恒温环境的反应热量计,以 2 mol·L-1HCl 作溶剂,分别测定了[2RE(NO3)3·6H2O+6L-PrO+6NaClO4·H2O]和{ [RE2(L-PrO)6(H2O)4](ClO4)6+6NaNO3}在 298.15 K时的溶解热.设计一热化学循环求得化学反应的反应焓rH分别是:63.904 kJ·mol-1和 91.017 kJ·mol-1,经计算得配合物[RE2(L-Pro)6(H2O)4](ClO4)6(s)在 298.15 K时的标准生成焓(298.15 K)分别 是-6 594.78 kJ·mol-1和-6 532.87 kJ·mol-1。  相似文献   

16.
用全自动绝热量热计测定了4种稀土异硫氰酸盐六水合物,Sm(NCS)_3·6H_2O,Gd(NCS)_3·6H_2O,Yb(NCS)_3·6H_2O和Y(NCS)_3·6H_2O在13~300 K间的热容,在实验温区上述化合物均未发现反常热容.根据实验热容数据用最小二乘拟合方法得出了计算这4种化合物在13~300 K温区内的热容多项式方程.13K以下的热容用 Debye-Einstein热容函数估算而得.计算了这些化合物在0~300 K间的标准热力学函数及其标准生成Gibbs能.  相似文献   

17.
在水-丙酮溶液中制备了zn(Leu)SO4@0.5H2O的配合物.通过热重和红外分析,研究了它的热分解机理,可分为三步完成.第一阶段配合物的脱水过程在60-180℃,形成Zn(Leu)S04,第二阶段,Zn(Leu)SO4进一步分解为Zn(Leu)SO4@9ZnSO4,随后其在728℃完全分解为ZnO.在不同线性升温5.O,10.0,15.0,20.OK@min-1条件下,用两种积分法和三种微分法研究了题目化合物失去配体过程的非等温动力学,相应过程的表观活化能E为133.78KJ@mol-1,指前因子A为1O8.19s-1,配体失去过程为三维扩散机理控制,并建立了反应过程的动力学方程.  相似文献   

18.
朱丽  焦宝娟  帅琪  杨旭武  高胜利  史启祯 《有机化学》2004,24(11):1417-1422
改进文献方法,以铜试剂(NaEt2dtc·3H2O)和邻菲咯啉(o-phen·H2O)与低水合氯化钬(HoCl3·3.58H2O)在无水乙醇中反应,制得三元固态配合物.化学分析和元素分析确定该配合物的组成为Ho(Et2dtc)3(phen).IR光谱表明配合物中Ho3 与3个NaEt2dtc中的6个硫原子双齿配位,同时与o-phen中的2个氮原子双齿配位,可推测其配位数为8.用微量热量计测定了298.15 K下液相生成反应的焓变△rHm (1),为(-14.697±0.0376)kJ·mol-1,通过合理的热化学循环计算了固相生成反应焓变△rHm (s),为(117.504±0.619)kJ·mol-1;改变反应温度,研究了配合物的液相生成反应的热力学性质.配合物的恒容燃烧能△cU用精密转动弹热量计测定为(-18687.64±8.22)kJ·mol-1,其标准燃烧焓△cHm 和标准生成焓△fHm 经计算分别为(-18706.85±8.22)和(-70.01±9.37)kJ·mol-1.  相似文献   

19.
李道华  忻新泉 《应用化学》2008,25(12):1421-0
La(Oxin)3·3H2O;纳米晶;超声波;固相化学合成;结构表征  相似文献   

20.
扈庆  甘树才  洪广言 《应用化学》2002,19(8):804-806
制备;La4-x(P2O5)3:Eux的合成及光谱性质  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号