首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen (type I from calf skin) adsorption on polystyrene (PS) and plasma-oxidized polystyrene (PSox) was studied, using a quartz crystal microbalance with energy dissipation measurements (QCM-D) and atomic force microscopy (AFM) in tapping mode. Radio-labeled collagen was used to measure the adsorbed amount and the ability of adsorbed collagen to exchange with molecules in the solution. The results show that the collagen adlayer consists of two parts: a dense and thin sheet in which fibrils are formed (directly observed by AFM) and an overlying thick layer (up to 200 nm) containing protruding molecules or bundles which are in very low concentration but modify noticeably the local viscosity. The thickness and viscosity of the semi-liquid adlayer both increase with adsorption time and collagen concentration. Fibril formation near the surface also increases with time and collagen concentration and occurs more readily on PS compared to PSox. Radiochemical measurements show that this may be related to the larger mobility of molecules adsorbed on PS, presumably owing to a smaller number of binding points.  相似文献   

2.
Adsorption (at 37 degrees C) of type I collagen, in native and heat-denatured (30 min at 40 and 90 degrees C) forms, on polystyrene was studied using quartz crystal microbalance with energy dissipation monitoring (QCM-D), atomic force microscopy (AFM) in tapping mode and X-ray photoelectron spectroscopy (XPS). The significance of the parameters deduced from QCM-D data was examined by comparing different approaches. The adsorbed layer of native collagen has a complex organization consisting of a thin mat of molecules near the surface, in which fibrils develop depending on concentration and time, and of a thicker overlayer containing protruding molecules or bundles which modify noticeably the local viscosity. As a result of drastic denaturation, the ability of collagen to assemble into fibrils in the adsorbed phase is lost and the protrusion of molecules into the aqueous phase is much less pronounced. The adsorbed layer of denatured collagen appears essentially as a monolayer of flattened coils. At low concentration, this is easily displaced upon drying, leading to particular dewetting figures; at high concentration, aggregates add to the first layer. Moderate denaturation leads to an adsorbed phase which shows properties intermediate between those observed with native and extensively denatured collagen, regarding the ability to form fibrillar structures and the adlayer thickness and viscosity.  相似文献   

3.
The self-organization behavior of a wedge-shaped surfactant, disodium-3,4,5-tris(dodecyloxy)phenylmethylphosphonate, was studied in Langmuir monolayers (at the air-water interface), Langmuir-Blodgett (LB) monolayers and multilayers, and films adsorbed spontaneously from isooctane solution onto a mica substrate (self-assembled films). This compound forms an inverted hexagonal lyotropic liquid crystal phase in the bulk and in thick adsorbed films. Surface pressure isotherm and Brewster angle microscope (BAM) studies of Langmuir monolayers revealed three phases: gas (G), liquid expanded (LE), and liquid condensed (LC). The surface pressure-temperature phase diagram was determined in detail; a triple point was found at approximately 10 degrees C. Atomic force microscope (AFM) images of LB monolayers transferred from various regions of the phase diagram were consistent with the BAM images and indicated that the LE regions are approximately 0.5 nm thinner than the LC regions. AFM images were also obtained of self-assembled films after various adsorption times. For short adsorption times, when monolayer self-assembly was incomplete, the film topography indicated the coexistence of two distinct monolayer phases. The height difference between these two phases was again 0.5 nm, suggesting a correspondence with the LE/LC coexistence observed in the Langmuir monolayers. For longer immersion times, adsorbed multilayers assembled into highly organized periodic arrays of inverse cylindrical micelles. Similar periodic structures, with the same repeat distance of 4.5 nm, were also observed in three-layer LB films. However, the regions of organized periodic structure were much smaller and more poorly correlated in the LB multilayers than in the films adsorbed from solution. Collectively, these observations indicate a high degree of similarity between the molecular organization in Langmuir layers/LB films and adsorbed self-assembled films. In both cases, monolayers progress through an LE phase, into LE/LC coexistence, and finally into LC phase as surface density increases. Following the deposition of an additional bilayer, the film reorganizes to form an array of inverted cylindrical micelles.  相似文献   

4.
In the last years, adsorbed collagen was shown to form layers with a supramolecular organization depending on the substrate surface properties and on the preparation procedure. If the concentration of collagen and the duration of adsorption are sufficient, fibrillar collagen structures are formed, corresponding to assemblies of a few molecules. This occurs more readily on hydrophobic compared to hydrophilic surfaces. This study aims at understanding the origin of such fibrillar structures and in particular at determining whether they result from the deposition of fibrils formed in solution or from the building of assemblies at the interface. Therefore, type I collagen solutions with an increasing degree of aggregation were prepared, using the “neutral-start” approach, by ageing pH 5.8 solutions at 37 °C for 15 min, 2 or 7 days. The obtained solutions were used to investigate the influence of collagen aggregation in solution on the supramolecular organization of adsorbed collagen layers, which was characterized by X-ray photoelectron spectroscopy and atomic force microscopy. Polystyrene and plasma-oxidized polystyrene were chosen as substrates for the adsorption. The size and the density of collagen fibrils at the interface decreased upon increasing the degree of aggregation of collagen in solution. This is explained by a competitive adsorption process between monomers and aggregates of the solution, turning at the advantage of the monomers. More aggregated solutions, which are thus depleted in free monomers, behave like less concentrated solutions, i.e. lead to a lower adsorbed amount and less fibril formation at the interface. This study shows that the supramolecular fibrils observed in adsorbed collagen layers, especially on hydrophobic substrates, are not formed in the solution, prior to adsorption, but are built at the interface, through the assembly of free segments of adsorbed molecules.  相似文献   

5.
The adsorption of collagen on polystyrene (PS) and polystyrene oxidized by oxygen plasma discharge (PSox) was studied as a function of time using radiolabeling, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Radiolabeling and XPS indicated that the initial step of adsorption was faster on PS than on PSox. AFM imaging under water revealed very different supramolecular organization of the adsorbed films depending on time and on the nature of the substrate: PS showed patterns of collagen aggregates at all adsorption times (from 1 min to 24 h); PSox was covered with a smooth layer except at long adsorption times (24 h), for which a mesh of collagen structures was observed. After fast drying, the collagen layer remained continuous and showed a morphology which recalled that observed under water. The mechanical stability of the adsorbed films was assessed under water by scraping with the AFM probe at different loading forces: no perturbations were created on PSox; in contrast, the layer adsorbed on PS was sensitive to scraping, the minimum force required to alter the collagen layer morphology increasing with time. These differences in the film properties were correlated with force measurements upon retraction: multiple adhesion forces were observed with collagen adsorbed on PS samples, whereas such an effect was never observed on PSox. The results show that the amount adsorbed and the organization of the adsorbed film respond differently to the adsorption time and that this is influenced by surface hydrophobicity. The quick initial adsorption on PS, compared to PSox, is thought to leave dangling collagen segments that are responsible for the observed morphology, for adhesion forces, and for lower mechanical resistance of the adsorbed layer.  相似文献   

6.
The organization of adsorbed type I collagen layers was examined on a series of polystyrene (PS)/poly(methyl methacrylate) (PMMA) heterogeneous surfaces obtained by phase separation in thin films. These thin films were prepared by spin coating from solutions in either dioxane or toluene of PS and PMMA in different proportions. Their morphology was unraveled combining the information coming from X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle measurements. Substrates with PMMA inclusions in a PS matrix and, conversely, substrates with PS inclusions in a PMMA matrix were prepared, the inclusions being either under the form of pits or islands, with diameters in the submicrometer range. The organization of collagen layers obtained by adsorption on these surfaces was then investigated. On pure PMMA, the layer was quite smooth with assemblies of a few collagen molecules, while bigger assemblies were found on pure PS. On the heterogeneous surfaces, it appeared clearly that the diameter and length of collagen assemblies was modulated by the size and surface coverage of the PS domains. If the PS domains, either surrounding or surrounded by the PMMA phase, were above 600 nm wide, a heterogeneous distribution of collagen was found, in agreement with observations made on pure polymers. Otherwise, fibrils could be formed, that were longer compared to those observed on pure polymers. Additionally, the surface nitrogen content determined by XPS, which is linked to the protein adsorbed amount, increased roughly linearly with the PS surface fraction, whatever the size of PS domains, suggesting that adsorbed collagen amount on heterogeneous PS/PMMA surfaces is a combination of that observed on the pure polymers. This work thus shows that PS/PMMA surface heterogeneities can govern collagen organization. This opens the way to a better control of collagen supramolecular organization at interfaces, which could in turn allow cell-material interactions to be tailored.  相似文献   

7.
The study of the adsorption behavior of surfac-which makes people further study the adsorptiontants to interfaces is very important in colloid and in-mechanism at the molecular level.terface science[1]owing to the important applications In situ AFM measur…  相似文献   

8.
有机HTDIOO分子LB膜结构的AFM研究   总被引:1,自引:0,他引:1  
利用原子力显微镜(AFM)对有机分子HTDIOO单层和多层LB膜结构进行了观察。实验结果表明,针尖与LB膜表面分子间的相互作用力会对成像的膜结构有影响。当悬臂针尖与LB膜表面分子的相互作用力较大时,针尖会扰动HTDIOO分子在单层LB膜中的有序排列。HTDIOO单层LB膜具有有序结构;而在多层LB膜中,HTDIOO分子则聚集在一起形成了一定的畴结构。  相似文献   

9.
A set of covalently linked phenyl-amidophenyl-substituted porphyrin amphiphiles with n-C15H31 tails have been synthesized and completely characterized. These amphiphiles form good Langmuir-Blodgett (LB) films at the air/water interface. Mean molecular areas for the series were measured from the isotherms and found to increase as the number of aliphatic chains increased from one to four. No influence of the subphase pH was observed on the isotherms. LB films can be transferred successfully onto different solid surfaces. The LB films were characterized using tapping mode atomic force microscopy (AFM). Bis-, tris-, and tetra-substituted porphyrins were found to be fairly good film-forming amphiphiles, whereas irregular aggregates were seen in the case of the monosubstituted porphyrin amphiphile. Multilayers were also formed with tetra-substituted amphiphiles on mica. Detailed AFM studies of tetra-substituted amphiphiles have been carried out to investigate the effect of preparation procedure and solid substrates on film formation and transfer. The absorption and fluorescence spectra for the amphiphiles in solution and LB films deposited onto mica and glass were recorded, which demonstrated the successful transfer of LB films onto the substrates and provided more information about the arrangement of porphyrin molecules within the LB films. For comparison, self-assembled monolayers (SAMs) and the cast thin films of the amphiphiles were prepared and characterized.  相似文献   

10.
利用原子力显微镜(AFM)对有机分子HTDIOO单层和多层LB膜结构进行了观察·实验结果表明,针尖与LB膜表面分子间的相互作用力会对成像的膜结构有影响.当悬臂针尖与LB膜表面分子的相互作用力较大时,针尖会扰动HTDIOO分子在单层LB膜中的有序排列.HTDIOO单层LB膜具有有序结构;而在多层LB膜中,HTDIOO分子则聚集在一起形成了一定的畴结构.  相似文献   

11.
The bioactivity of anti-human IgG Langmuir-Blodgett (LB) films, the non-specific adsorption of protein and the topography of anti-IgG LB films have been studied for application in immunosensors. The antibody (AB) LB films were horizontally deposited on glass and functionalized polymers, such as carboxy-poly(vinyl chloride) (PVC-COOH), chloropropyl and aminopropyl sol-gel. The LB films were characterized by means of ellipsometry, atomic force microscopy (AFM) and bicinchoninic acid (BCA) protein test. The interpretation of ellipsometric data was performed using a one-layer model. Non-specifically adsorbed protein was desorbed by washing the IgG film in 0.5 M NaCl, 2 M NaCl and 1% N-cetyl-N,N,N-trimethylammoniumbromide detergent solution resulting in a 50% reduction of the film thickness. The mean thickness of an anti-IgG film on glass measured by ellipsometry, PVC-COOH and aminopropyl sol-gel was 9+/-2, 11+/-1 and 23+/-8 nm, respectively. According to the BCA test 6-8 mug antibody (AB) per slide was bound to the functionalized polymers, but only 3 mug AB per slide was adsorbed on glass. The average distance of anti-IgG granules as indicated by AFM measurements on PVC-COOH, chloropropyl and aminopropyl sol-gel was 42+/-20, 34+/-3 and 23+/-4 nm. The average distance of granular AB structures on glass, however, was 150+/-50 nm.  相似文献   

12.
The adsorption of bis-3-sodiumsulfopropyldi-sulfide (SPS) on metal electrodes in chloride-containing media has been intensively studied to unveil its accelerating effect on Cu electrodeposition. Molecular resolution scanning tunneling microscopy (STM) imaging technique was used in this study to explore the adsorption and decomposition of SPS molecules concurring with the electrodeposition of copper on an ordered Pt(111) electrode in 0.1 M HClO(4) + 1 mM Cu(ClO(4))(2) + 1 mM KCl. Depending on the potential of Pt(111), SPS molecules could react, adsorb, and decompose at chloride-capped Cu films. A submonolayer of Cu adatoms classified as the underpotential deposition (UPD) layer at 0.4 V (vs Ag/AgCl) was completely displaced by SPS molecules, possibly occurring via RSSR (SPS) + Cl-Cu-Pt → RS(-)-Pt(+) + RS(-) (MPS) + Cu(2+) + Cl(-), where MPS is 3-mercaptopropanesulfonate. By contrast, at 0.2 V, where a full monolayer of Cu was presumed to be deposited, SPS molecules were adsorbed in local (4 × 4) structures at the lower ends of step ledges. Bulk Cu deposition driven by a small overpotential (η < 50 mV) proceeded slowly to yield an atomically smooth Cu deposit at the very beginning (<5 layers). On a bilayer Cu deposit, the chloride adlayer was still adsorbed to afford SPS admolecules arranged in a unique 1D striped phase. SPS molecules could decompose into MPS upon further Cu deposition, as a (2 × 2)-MPS structure was observed with prolonged in situ STM imaging. It was possible to visualize either SPS admolecules in the upper plane or chloride adlayer sitting underneath upon switching the imaging conditions. Overall, this study established a MPS molecular film adsorbed to the chloride adlayer sitting atop the Cu deposit.  相似文献   

13.
亚甲基蓝在云母表面吸附状态的研究   总被引:4,自引:0,他引:4  
利用XPS测定吸附前后亚甲基蓝(MB)各原子的电子结合能的变化,以判断原子化学环境的改变,从而确定MB在云母表面的吸附位点是二甲胺基上的氮原子.通过AFM测量得到吸附于云母表面的MB分子的平均高度为0.820 nm,这证实了Hähner吸附模型的正确性,即MB分子的最大横截面以65~70°倾斜在云母的(001)表面上.  相似文献   

14.
The Layer-by-layer deposition of positively and negatively charged macromolecular species is an ideal method for constructing thin films incorporating biological molecules. We investigate the adsorption of fibronectin onto polyelectrolyte multilayer (PEM) films using optical waveguide lightmode spectroscopy (OWLS) and atomic force microscopy (AFM). PEM films are formed by adsorption onto Si(Ti)O2 from alternately introduced flowing solutions of anionic poly(sodium 4-styrenesulfonate) (PSS) and cationic poly(allylamine hydrochloride) (PAH). Using OWLS, we find the initial rate and overall extent offibronectin adsorption to be greatest on PEM films terminated with a PAH layer. The polarizability density of the adsorbed protein layer, as measured by its refractive index, is virtually identical on both PAH- and PSS-terminated films; the higher adsorbed density on the PAH-terminated film is due to an adsorbed layer of roughly twice the thickness. The binding of monoclonal antibodies specific to the protein's cell binding site is considerably enhanced to fibronectin adsorbed to the PSS layer, indicating a more accessible adsorbed layer. With increased salt concentration, we find thicker PEM films but considerably thinner adsorbed fibronectin layers, owing to increased electrostatic screening. Using AFM, we find adsorbed fibronectin layers to contain clusters; these are more numerous and symmetric on the PSS-terminated film. By considering the electrostatic binding of a segmental model fibronectin molecule, we propose a picture of fibronectin adsorbed primarily in an end-on-oriented monolayer on a PAH-terminated film and as clusters plus side-on-oriented isolated molecules onto a PSS-terminated film.  相似文献   

15.
The adsorption of proteins and its buffer solution on mica surfaces was investigated by atomic force microscopy (AFM). Different salt concentration of the Herbaspirillum seropedicae GlnB protein (GlnB-Hs) solution deposited on mica was investigated. This protein is a globular, soluble homotrimer (36 kDa), member of PII-like proteins family involved in signal transducing in prokaryote. Supramolecular structures were formed when this protein was deposited onto bare mica surface. The topographic AFM images of the GlnB-Hs films showed that at high salt concentration the supramolecular structures are spherical-like, instead of the typical doughnut-like shape for low salt concentration. AFM images of NaCl and Tris from the buffer solution showed structures with the same pattern as those observed for high salt protein solution, misleading the image interpretation. XPS experiments showed that GlnB protein film covers the mica surface without chemical reaction.  相似文献   

16.
The supramolecular organization of collagen adsorbed from a 7 microg/ml solution on polystyrene was investigated as a function of the adsorption duration (from 1 min to 24 h) and of the drying conditions (fast drying under a nitrogen flow, slow drying in a water-saturated atmosphere). The morphology of the created surfaces was examined by atomic force microscopy (AFM), while complementary information regarding the adsorbed amount and the organization of the adsorbed layers was obtained using radioassays, X-ray photoelectron spectroscopy (XPS), and wetting measurements. The collagen adsorbed amount increased up to an adsorption duration of 5 h and then leveled off at a value of 0.9 microg/cm2. For samples obtained by fast drying, modeling of the N/C ratios obtained by XPS in terms of thickness and surface coverage, in combination with the adsorbed amount, water contact angle measurements and AFM images, indicated that the adsorbed layer formed a felt starting from 30 min of adsorption, the density and/or the thickness of which increased with the adsorption time. Upon slow drying, the collagen layers formed after adsorption times up to about 2 h underwent a strong reorganization. The obtained nanopatterns were attributed to dewetting, the liquid film being ruptured and adsorbed collagen being displaced by the water meniscus. At higher adsorption times, the organization of the collagen layer was similar to that obtained after fast drying, because the onset of dewetting and/or collagen displacement were prevented by the high density of the collagen felt.  相似文献   

17.
Langmuir-Blodgett (LB) films of the water-soluble dye phenosafranine (PS) have been prepared by its adsorption from aqueous dye solution to an arachidic acid (AA) monolayer at the air-water interface. Atomic force microscopy (AFM) images of the LB films revealed the effect of change in pH of deposition on the degree of complexation of AA with the PS dye. Well-defined circular islands and holes were observed which disappeared with the increase in pH. Polarized absorption studies indicated that the dye molecules are oriented uniaxially with their long axis titled at a constant angle to the surface normal of the LB film. Within the restricted geometry of the LB film, the PS dye was electropolymerized to form a two-dimensional film of poly(phenosafranine) sandwiched between arachidic acid layers. The film was characterized by IR spectroscopy, cyclic voltammetry, and AFM. X-ray diffraction studies reveal the presence of a layer structure in the AA-PS LB film before and after polymerization. The polymer film showed highly anisotropic electrical conductivity of ca. 10 orders of magnitude. This indicates the formation of two-dimensional polyPS layers between arachidic acid layers resulting in a layered heterostructure film having alternate conducting and insulating regions. Also, the conductivity of the polyPS prepared from LB film was found to be approximately 2.5 times higher than the conductivity of polyPS prepared by solution polymerization method.  相似文献   

18.
Ordered assembly of collagen molecules on flat substrates has potential for various applications and serves as a model system for studying the assembly process. While previous studies demonstrated self-assembly of collagen on muscovite mica into highly ordered layers, the mechanism by which different conditions affect the resulting morphology remains to be elucidated. Using atomic force microscopy, we follow the assembly of collagen on muscovite mica at a concentration lower than the critical fibrillogenesis concentration in bulk. Initially, individual collagen molecules adsorb to mica and subsequently nucleate into fibrils possessing the 67 nm D-periodic bands. Emergence of fibrils aligned in parallel despite large interfibril distances agrees with an alignment mechanism guided by the underlying mica. The epitaxial growth was further confirmed by the formation of novel triangular networks of collagen fibrils on phlogopite mica, whose surface lattice is known to have a hexagonal symmetry, whereas the more widely used muscovite does not. Comparing collagen assembly on the two types of mica at different potassium concentrations revealed that potassium binds to the negatively charged mica surface and neutralizes it, thereby reducing the binding affinity of collagen and enhancing surface diffusion. These results suggest that collagen assembly on mica follows the surface adsorption, diffusion, nucleation, and growth pathway, where the growth direction is determined at the nucleation step. Comparison with other molecules that assemble similarly on mica supports generality of the proposed assembly mechanism, the knowledge of which will be useful for controlling the resulting surface morphologies.  相似文献   

19.
An undecanol film adsorbed on a mica surface was found to rearrange and spread in a position-controlled way induced by a tapping mode atomic force microscopy (AFM) probe. AFM images of varying scanning times showed that before forming an ordered monolayer the undecanol molecules were adsorbed on the mica surface in the disordered and disorganized status. With the proceeding of scanning, these undecanol molecules gradually formed an ordered and flat film. Such behavior was caused by the formation of a stable film and had never been reported for other alcohols.  相似文献   

20.
We present results concerning the formation of Langmuir-Blodgett (LB) films of a class I hydrophobin from Pleurotus ostreatus at the air-water interface, and their structure as Langmuir-Blodgett (LB) films when deposited on silicon substrates. LB films of the hydrophobin were investigated by atomic force microscopy (AFM). We observed that the compressed film at the air-water interface exhibits a molecular depletion even at low surface pressure. In order to estimate the surface molecular concentration, we fit the experimental isotherm with Volmer's equation describing the equation of state for molecular monolayers. We found that about (1)/ 10 of the molecules contribute to the surface film formation. When transferred on silicon substrates, compact and uniform monomolecular layers about 2.5 nm thick, comparable to a typical molecular size, were observed. The monolayers coexist with protein aggregates, under the typical rodlet form with a uniform thickness of about 5.0 nm. The observed rodlets appear to be a hydrophilic bilayer and can then be responsible for the surface molecular depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号