首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The free vibrations of a transversely isotropic prestressed linear elastic half-space, localized close to a free surface, are considered. The free vibrations of a prestressed transversely isotropic infinite plate, lying on an elastic foundation, are also considered. The dispersion equation is analysed as a function of the wave numbers, the elastic properties of the foundation and of the plate and the values of the prestresses. The investigation is confined to cases when the initial stresses are less than the critical values, while the elastic waves do not penetrate into the depth of the foundation but are localized close to the free surface. The stability of the half-space and the plate on an elastic foundation is also considered. When analysing the vibrations and the stability of the plate, the results in the three-dimensional formulation of the problem are compared with the results of the two–dimensional Kirchhoff–Love and Timoshenko–Reissner models.  相似文献   

2.
In this paper, mathematical modeling of the propagation of Love waves in a fluid-saturated porous layer under a rigid boundary and lying over an elastic half-space under gravity has been considered. The equations of motion have been formulated separately for different media under suitable boundary conditions at the interface of porous layer, elastic half-space under gravity and rigid layer. Following Biot, the frequency equation has been derived which contain Whittaker’s function and its derivative that have been expanded asymptotically up to second term (for approximate result) for large argument due to small values of Biot’s gravity parameter (varying from 0 to 1). The effect of porosity and gravity of the layers in the propagation of Love waves has been studied. The effect of hydrostatic initial stress generated due to gravity in the half-space has also been shown in the phase velocity of Love waves. The phase velocity of Love waves for first two modes has been presented graphically. Frequency equations have also been derived for some particular cases, which are in perfect agreement with standard results. Subsequently the lower and upper bounds of Love wave speed have also been discussed.  相似文献   

3.
The present paper investigates the Love wave propagation in an anisotropic porous layer under the effect of rigid boundary. Effect of initial stresses on the propagation of Love waves in a fluid saturated, anisotropic, porous layer having linear variation in directional rigidities lying in contact over a pre-stressed, inhomogeneous elastic half-space has also been considered. The dispersion equation of phase velocity has been derived and the influence of medium characteristic such as porosity, rigid boundary, initial stress, anisotropy and inhomogeneity over it has been discussed. The velocities of Love waves have been calculated numerically as a function of KH (where K is the wave number and H is the thickness of the layer) and are presented in a number of graphs.  相似文献   

4.
A modified transfer-matrix method is proposed to describe Love waves in multilayered anisotropic (monoclinic) media. Dispersion relations for media consisting of one and two anisotropic elastic layers in contact with an anisotropic half-space are obtained in closed form. The conditions for Love waves to exist are analysed. Waves with horizontal transverse polarization of the non-canonical type are investigated.  相似文献   

5.
In the present paper, the dispersion equation which determines the velocity of torsional surface waves in a homogeneous layer of finite thickness over an initially stressed heterogeneous half-space has been obtained. The dispersion equation obtained is in agreement with the classical result of Love wave when the initial stresses and inhomogeneity parameters are neglected. Numerical results analyzing the dispersion equation are discussed and presented graphically. The result shows that the initial stresses have a pronounced influence on the propagation of torsional surface waves. It has also been shown that the effect of density, directional rigidities and non-homogeneity parameter on the propagation of torsional surface waves is prominent.  相似文献   

6.
This paper presents theoretical model for shear-horizontal (SH) surface acoustic waves of the Love type propagating in lossy waveguides consisting of a lossy viscoelastic layer deposited on a lossless elastic half-space. To this end, a direct Sturm–Liouville problem that describes Love waves propagation in the considered viscoelastic waveguides was formulated and solved, what constitutes a novel approach to the state-of-the-art. To facilitate the solution of the complex dispersion equation, the Author employed an original approach that relies on the separation of its real and imaginary part. By separating the real and imaginary parts of the resulting complex dispersion equation for a complex wave vector k = k0 + jα of the Love wave, a system of two real nonlinear transcendental algebraic equations for k0 and α has been derived. The resulting set of two algebraic transcendental equations was then solved numerically. Phase velocity vp and coefficient of attenuation α were calculated as a function of the wave frequency f, thickness of the surface layer h and its viscosity η44. Dispersion curves for Love waves propagating in lossy waveguides, with a lossy surface layer deposited on a lossless substrate, were compared to those corresponding to Love surface waves propagating in lossless waveguides, i.e., with a lossless surface layer deposited on a lossless substrate. The results obtained in this paper are original and to some extent unexpected. Namely, it was found that: 1) the phase velocity vp of Love surface waves increases as a function of viscosity η44 of the lossy surface layer, and 2) the coefficient of attenuation α has a maximum as a function of thickness h of the lossy surface layer. The results obtained in this paper are novel and can be applied in geophysics, seismology and in the optimal design and development of viscosity sensors, bio and chemosensors.  相似文献   

7.
The period equation for Love waves is derived for a layered medium, which is composed of a compressible, viscous liquid layer sandwiched between homogeneous, isotropic, elastic solid layer and homogeneous, isotropic half space. In general, the period equation will admit complex roots and hence Love waves will be dispersive and attenuated for this type of model. The period equation is discussed in the limiting case when thicknessH 2 and coefficient of viscosity, η2, of the liquid layer tend to zero so as to maintain the ratioP=H 22 constant. Numerical values for phase velocity, group velocity, quality factor (Q) and displacement in the elastic layer and half space have been computed as a function of the frequency for first and second modes for various values of the parameterP. It is shown that Love waves are not attenuated whenP=0 and ∞. The computed values ofQ for first and second modes indicate that whenP≠0 or ∞ the value ofQ attains minimum value as a function of dimensionless angular frequency.  相似文献   

8.
In this paper, the propagation of Love waves in anisotropic elastic media is studied. These waves are a similar to the transverse surface SH waves in the isotropic case. Necessary conditions for the existence of Love waves of this polarization type near the surface Σ of an anisotropic elastic body are deduced. The algorithm developed here makes it possible to find the direction (s) of transverse surface wave propagation (at every point on the surface Σ). The algorithm employed is illustrated by some special anisotropic cases. The space-time method is used to construct the asymptotics of Love waves for those types of anisotropic media the eikonal equation of which is valid on the surface of an elastic body. Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 210, 1994, pp. 262–276 Translated by Z. A. Yanson  相似文献   

9.
10.
An asymptotic approach is used in this paper to examine solutions of the problem of distant propagation of Love waves in a medium consisting of an inhomogeneous layer lying on a homogeneous half-space. The dispersion properties of these waves and their attenuation are estimated.Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 156, pp. 125–135, 1986.  相似文献   

11.
研究了扭转表面波在一个半无限非均匀半空间中的传播,半空间上覆盖着具有初始应力的各向异性多孔弹性层,弹性层的刚度和密度线性地变化,造成了界面的不规则性.半空间中界面的不规则性,用一个矩形形式表示.可以发现,扭转表面波在这样假定的介质中传播,得到了没有不规则性时的扭转表面波的速度方程.还可以发现,对于均匀半空间覆盖的层状介质,扭转表面波的速度与Love波的速度相一致.  相似文献   

12.
The paper is an immediate continuation of the paper where the solution of the problem on the propagation of low-frequency waves in thin-layered media by the dispersion equation method was considered in detail. In the present article, the solution of a similar problem is given for an elastic layer and a half-space, which are in rigid contact, by the method of superposition of complex plane waves. Bibliography: 17 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 342, 2007, pp. 217–232.  相似文献   

13.
The present paper is aimed at to study the propagation of surface waves in a homogeneous isotropic, thermally conducting and elastic solid underlying a layer of viscous liquid with finite thickness in the context of generalized theories of thermoelasticity. The secular equations for non-leaky Rayleigh waves, in compact form are derived after developing the mathematical model. The amplitude ratios of displacements and temperature change in both media at the surface (interface) are also obtained. The liquid layer has successfully been modeled as thermal load in addition to normal (hydrostatic pressure) one, which is the distinctive feature of the present study and missing in earlier researches. Finally, the numerical solution is carried out for aluminum-epoxy composite material solid (half-space) underlying a viscous liquid layer of finite thickness. The computer simulated results for dispersion curves, attenuation coefficient profiles, amplitude ratios of surface displacements and temperature change have been presented graphically, in order to illustrate and compare the theoretical results. The present analysis can be utilized in electronics and navigation applications in addition to surface acoustic wave (SAW) devices.  相似文献   

14.
This paper is concerned with the Rayleigh wave dispersion in an incompressible functionally graded orthotropic half-space loaded by a thin fluid-saturated aeolotropic porous layer under initial stress. Both the layer and half-space have subjected to the incompressible in nature. The particle motion of the Rayleigh type wave is elliptically polarized in the plane, which described by the normal to the surface and the focal point along with wave generation. The dispersion of waves refers typically to frequency dispersion, which means different wavelengths travel at a different velocity of phase. To deal with the analytical solution of displacement components of Rayleigh type waves in a layer over a half-space, we have taken the assistance of different methods like exponential, characteristic polynomial and undetermined coefficients. The dispersion relation has been derived based upon suitable boundary conditions. The finite difference scheme has been introduced to calculate the phase velocity and group velocity of the Rayleigh type waves. We also have derived the stability condition of the finite difference scheme (FDS) for the phase and group velocities. If a wave equation has to travel in the time domain, it is necessary to achieve both accuracy and stability requirements. In such cases, FDS is preferred because of its power, accuracy, reliability, rapidity, and flexibility. The effect of various parameters involved in the model like non-homogeneity, porosity, and internal pre-stress on the propagation of Rayleigh type waves have been studied in detail. Graphical representations for the effects of various parameters on the dispersion equation have been represented. Numerical results demonstrated the accuracy and versatility of the group and phase velocity depending on the stability ratio of the FDS.  相似文献   

15.
Using a boundary method, we investigated the scattering of elastic plane harmonic SH, SV, P, and Rayleigh waves by three-dimensional nonaxisymmetric dipping layers embedded in an elastic half-space. The valley was subjected to incident Rayleigh wave and oblique incident SH, SV, and P waves. The method utilized spherical wave functions to express the unknown scattered field. These functions satisfy the equation of motion and radiation conditions at infinity but they do not satisfy the stress-free boundary conditions at the surface of the half-space. The boundary and continuity conditions are imposed locally in the least-square-sense at several points on the layer interface and on the surface of the half-space. A comparative study was done to examine the validity and limitations of the two-dimensional approximations (antiplane and plane strain models) of three-dimensional models. It is demonstrated that the two-dimensional approximations may be inadequate to represent actual displacement field for three-dimensional irregularities.  相似文献   

16.
The head interference wave associated with the propagation of the P-wave in an elastic half-space is studied by using as an example the propagation of pressure waves in a liquid layer covering an elastic half-space. The attenuation of such a wave with respect to the distance between a source and a receiver is smaller than that in the classical theory. The wave field is considered both in time and frequency domains. The stationary wave field of the head interference wave is of resonance nature. From the mathematical point of view, the resonance peaks occur when the roots of the dispersion equation pass through a branch point. The minimal attenuation of the stationary wave field is observed in a neighborhood of such resonance peaks. Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 225, 1996, pp. 40–61. Translated by N. S. Zabavnikova.  相似文献   

17.
In this article the characteristics of the extensional and flexural modes, propagating in a thermoelastic orthotropic layer lying over a viscoelastic half-space, are analyzed. The complete analysis is carried out in the framework of a thermodynamically consistent hyperbolic type heat conduction model without energy dissipation. The normal-mode-analysis is adopted and a general form of dispersive equation is derived for an anisotropic thermoelastic layered medium. A prominent distinction with the isotropic elastic solids is observed in the symmetric as well as anti-symmetric modes of dispersion curves. In turn, such deformation reshapes the wave propagation while the deformation stiffening changes significantly the phase velocities of the wave till the acoustic radiation stresses are balanced by elastic stresses in the current configuration of the hyperelastic medium.  相似文献   

18.
A uniform asymptotics of the surface Love modes for a special case of anisotropy (tranverse isotropy) of an elastic media is obtained. In constructing the asymptotics of surface waves, the space-time (ST) ray method is employed. The wave field of each Love mode is represented as the sum of the ST caustic expansion involving the Airy functions with a real eikonal and two correction terms that are ST ray solutions, which in fact are inhomogeneous waves with complex eikonals. The eikonals and coefficients of the caustic and ray series are sought in the form of expansions in powers of two variables. The first variable is the distance from the surface, whereas the other characterizes the proximity of the caustic of a ray field to the boundary surface. Thanks to the specific structure of the elasticity tensor for a transversely isotropic medium, the boundary surface is necessarily a plane. A recursion process of computation of higher terms of the asymptotic expansion allows one to trace the conversion of the formulas obtained to the known ray solutions for isotropic elastic media. Relations between the elasticity parameters of a medium are obtained that ensure the existence of SH Love waves in a transversely isotropic medium and that are consistent with the conditions of the positiveness of the elastic energy of deformation. Bibliography: 6 titles.  相似文献   

19.
In this paper, we investigated the propagation of shear waves in a transversely isotropic poroelastic layer constrained between two elastic layers. Following Biot’s theory, the dispersion equation for shear waves in this structure was derived. The numerical values on the dimensionless phase velocities are calculated and presented graphically to illustrate the dependences upon geometry, anisotropy and porosity comparatively. It is observed that the phase velocities increase with the increase of the porosity and the decrease of the anisotropy. In addition, the geometry in this structure has a significant effect on the phase velocity of the shear waves.  相似文献   

20.
In the context of the finite elasticity theory, we considera model for compressible solids called ‘compressible neo-Hookeanmaterial’. We show how finite-amplitude inhomogeneousplane wave solutions and finite-amplitude unattenuated solutionscan combine to form a finite-amplitude Love wave. We take alayer of finite thickness overlying a solid half-space, bothmade of different prestressed compressible neo-Hookean materials.We derive an exact solution of the equations of motion and boundaryconditions and also obtain results for the energy density andthe energy flux of the waves. Finally, we investigate the specialcase when the interface between the layer and the substrateis in a principal plane of the prestrain. A numerical exampleis given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号