首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulase was covalently immobilized using a hydrophilic polyurethane foam (Hypol®FHP 2002). Compared to the free enzyme, immobilized cellulase showed a dramatic decrease (7.5-fold) in the Michaelis constant for carboxymethylcellulose. The immobilized enzyme also had a broader and more basic pH optimum (pH 5.5–6.0), a greater stability under heat-denaturing or liquid nitrogen-freezing conditions, and was relatively more efficient in utilizing insoluble cellulose substrates. High molecular weight compounds (Blue Dextran) could move throughout the foam matrix, indicating permeability to insoluble celluloses; activity could be further improved 2.4-fold after powdering, foams under liquid nitrogen. The improved kinetic and stability features of the immobilized cellulase combined with advantageous properties of the polyurethane foam (resistance to enzymatic degradation, plasticity of shape and size) suggest that this mechanism of cellulase immobilization has high potential for application in the industrial degradation of celluloses.  相似文献   

2.
Amyloglucosidase was immobilized onto granular chicken bone (BIOBONE?) by noncovalent interactions. The amount of activity bound relative to an equal amount of free enzyme was 13.6 ?0.4%. The estimated specific activity for amyloglucosidase decreased from 75.3?0.8 to 43.5 ?9.6 U/mg protein upon immobilization. TheKm value of the bone-immobilized enzyme using glycogen as substrate increased from 3.04?0.38 mg/mL (free) to 9.04? 1.51 mg/mL (immobilized), butKm showed no change upon immobilization when starches were used as substrates. A decrease in Vmax values occurred upon enzyme immobilization for all substrates, but this largely reflected the percentage of enzyme initially bound to the bone. Immobilization also improved enzyme stability in the presence of various additives (e.g., detergent, KC1, and ethanol) or under low or high pH reaction conditions. Bound amyloglucosidase maintained high activity (>90%) following five cycles of continuous use at moderate (23 ?C) and high (55?C) temperatures. Data derived from Lineweaver-Burk and Arrhenius plots indicated that substrate and product diffusion limitation were minimal.  相似文献   

3.
Summary The enzyme amyloglucosidase was immobilized on oxidized DIOL silica and used to separate enantiomers of amino alcohols. The influence of pore size on enantioselectivity was studied and an optimum in the separation factors was found using 500 ? DIOL silica as the starting material. About twice the amount of the protein could be immobilized on the 500 ? DIOL silica material as on the 300 and 1000 ? materials. The immobilization procedure was easy to reproduce and no significant difference in the chromatographic behavior was observed between two amyloglucosidase columns produced in-house. The effect of solute structure on enantioselective retention was studied using a set of 10 closely related amino alcohols. High separation factors (α>2) were obtained and the efficiency of the amyloglucosidase columns was greater than 25 000 plates/m based on the last eluted enantiomer.  相似文献   

4.
Interpenetrating polymer networks (IPNs) of polyurethane (PU) and maleimide-terminated polyurethane (UBMI) were prepared by using a simultaneous polymerization technique. The effects of the UBMI molecular weight and amounts of the UBMI in the IPNs on the mechanical properties, dynamic mechanical properties, degree of compatibility, water absorption, surface properties and dynamic thrombosis were investigated. Bulk structure and surface properties were analyzed in order to correlate their blood compatibility. The IPNs exhibited a higher ultimate tensile strength especially when the UBMI with short soft chains was introduced. The heterogeneous characteristics were found for the IPNs when longer soft segment chains were incorporated in the PU component polymer. The presence of hydrophilic/hydrophobic alternative microdomains on the IPN surface was proposed to be the reason for good blood compatibility. The degree of compatibility, compositions of each domain and content of each domain in the matrix were calculated and correlated with the blood compatibility.  相似文献   

5.
Semi-interpenetrating polymer networks (semi-IPNs) of acrylamide based polyurethanes were synthesized from different NCO-terminated polyurethane prepolymers derived from polytetramethylene ether glycol (PTMEG). The resulting semi-IPNs were characterized using FTIR, DSC, and TGA measurements. Variation in the NCO/OH ratio and the molecular weight of the diol gave semi-IPNs with different types of mechanical characteristics varying from elastomer to brittle plastic properties. Differential scanning calorimetry (DSC) data revealed a difference in the glass transition temperature (Tg) of the semi-IPNs relative to the normal polyacrylamide (PAAM) network. Incorporation of polyurethane into polyacrylamide network in the form of an interpenetrating polymer networks enhanced the mechanical and thermal properties of the semi-IPNs due to higher crosslink density imparted by the hard segment content. The swelling behavior of both the semi-IPNs and the individual polyacrylamide (PAAM) network in different pH conditions were investigated to check their biocompatibility and possible usage in biomedical field. The hydrolytic stability of the semi-IPNs and the polyacrylamide (PAMM) network was studied using phosphate buffer solution. The hydrolytic stability of the semi-IPNs was found to be more compared to PAMM network. The morphology of both the semi-IPNs and the individual polyacrylamide (PAAM) network was investigated using SEM.  相似文献   

6.
Yao C  Qi L  Hu W  Wang F  Yang G 《Analytica chimica acta》2011,692(1-2):131-137
A new kind of immobilized trypsin reactor based on sub-micron skeletal polymer monolith has been developed. Covalent immobilization of trypsin on this support was performed using the epoxide functional groups in either a one- or a multi-step reaction. The proteolytic activity of the immobilized trypsin was measured by monitoring the formation of N-α-benzoyl-L-arginine (BA) which is the digestion product of a substrate N-α-benzoyl-L-arginine ethyl ester (BAEE). Results showed that the digestion speed was about 300 times faster than that performed in free solution. The performance of such an enzyme reactor was further demonstrated by digesting protein myoglobin. It has been found that the protein digestion could be achieved in 88 s at 30°C, which is comparable to 24 h digestion in solution at 37°C. Furthermore, the immobilized trypsin exhibits increased stability even after continuous use compared to that in free solution. The present monolithic enzyme-reactor provides a promising platform for the proteomic research.  相似文献   

7.
Comprehensive characterization of new polymer electrolyte system prepared using polyurethane derived from castor oil polyol was undertaken. The castor oil polyol was synthesized via transesterification and reacted with 4,4′-diphenylmethane diisocyanate to form polyurethane. Polyurethane electrolyte films were prepared by addition of sodium iodide in different weight percentage with respect to the weight of the polymer. The electrolyte films were analyzed using Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, transference number measurement, and linear sweep voltammetry. Fourier transform infrared spectroscopy results confirmed the complexation between polymer and salt. Tan delta peak observed in the tan δ–temperature curve plotted using data obtained from dynamic mechanical analysis indicated that the glass transition temperature of polyurethane decreased with the addition of sodium iodide. The highest conductivity of 4.28 × 10?7 S cm?1 was achieved for the film with 30 wt% of sodium iodide. The performances of dye-sensitized solar cell using the electrolyte systems were analyzed in terms of short-circuit current density, open-circuit voltage, fill factor, and energy conversion efficiency. The polymer electrolyte with 30 wt% sodium iodide showed the best performance with energy conversion efficiency of 0.80%.  相似文献   

8.
The change in micromorphology of the polymer phase (single strut) of a flexible polyurethane foam during deformation has been investigated by attenuated total reflection infrared spectroscopy - linear dichroism and by atomic force microscopy. Deformation and, therefore, orientation take place mainly in the soft rubbery phase. This two-phase elastic deformation process has been translated into a mathematical model, which correctly predicts the shape of a single-strut stress-strain curve. The theory also predicts the ultimate shape of stress-strain curves of polyurethane elastomers at various hard phase contents and of low-density polyethylene at various temperatures. Deviations from the elastic behaviour could be ascribed to yielding in combination with the rubbery behaviour.  相似文献   

9.
Lap shear measurements of adhesion in joints of polymers bonded with polyurethane adhesives varied significantly with time at elevated temperature. The effect has been linked with the ability of polyurethane molecules to restructure in response to the orienting strength of substrate surfaces, as defined by their non-dispersive surface energy component. Acid/base interactions at the polymer/adhesive interface further affect the bond strength, increasing this important property when acid/base pairs are located at the interface, and diminishing the variable when acid/base interactions are absent.  相似文献   

10.
A series of interpenetrating polymer networks (IPNs), based on a polyurethane (PU) and polydimethylsiloxane, has been synthesized and characterized by means of DSC, TEM, TGA, 1H-NMR and IR spectroscopies, and other techniques. The homo-networks have been characterized by swelling in n-hexane and chloroform. The IPNs are obtained by combination of a PU based of the castor oil and 2,4-toluene diisocyanate (TDI) with different amounts of polydimethylsiloxane-α,ω-diol (PDMS). These materials have interesting individual physical properties, but some IPNs exhibited superior properties than either of the separate networks. For interesting results, it was used as compatibilizer the polydimethylsiloxane graft polyalkylene oxide. All the IPNs exhibited phase separation and maximum extent at the point of phase inversion.  相似文献   

11.
聚氨酯/环氧树脂互穿网络聚合物的性能研究   总被引:12,自引:0,他引:12  
互穿聚合物网络(Interpenetrating polymer net-work,简称IPN)广泛应用的为聚氨酯基的互穿网络聚合物。其合成多集中在弹性体方面。本文用同步法合成的聚氨酯/环氧树脂互穿网络硬质泡沫塑料材料(简称PU/ERIPNF),机械性能较好,并研究了其动态力学性能及形态变化。  相似文献   

12.
The formation of microheterogeneous sequential semi-interpenetrating polymer networks based on network polyurethanes with different molecular masses of chain segments between crosslinks and a linear polystyrene has been studied by DSC and small-angle X-ray scattering. It has been shown that variation in the molecular mass of polymer segments between polyurethane network junctions affects the formation of the linear component of semi-interpenetrating polymer networks. As a result, the material structure may change in a wide range from a nearly single-phase system to a two-phase one. SAXS measurements indicate that there is a cymbate dependence between the degree of segregation of components of sequential semi-interpenetrating polymer networks and their microheterogeneous structure on the internetwork space. Two hierarchical heterogeneity levels are found to exist in polymer networks, and the features of each of these levels are analyzed.  相似文献   

13.
Polymeric “cocrystalline forms,” that is, structures were a polymeric host and a low‐molecular‐mass guest are cocrystallized, were early recognized, and in many cases also well characterized by X‐ray diffraction studies. However, only in the last two decades cocrystalline forms have received attention in material science, due to the ability (of few of them) to maintain an ordered polymer host structure even after guest removal, thus leading to the formation of “nanoporous‐crystalline forms,” for which many applications in the fields of molecular separation and sensors have been proposed. Moreover, in the last decade, an accurate control of the orientation of the polymer cocrystalline phases has been achieved, thus leading to a control of the orientation of the guest molecules, not only in the crystalline phase but also in macroscopic films. In addition, on the basis of this orientation control, in the last few years, cocrystalline films where active molecules are present as guests of polymer cocrystalline phases have been proposed for optical, magnetic and electric applications. In the last few years, it has been also discovered that polymer cocrystallization, when induced by nonracemic guest molecules, can produce stable chiral optical films. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
15.
Methods of gravimetry, optical microscopy, FTIR spectroscopy, and conductometry were applied to the study of the adsorption of the following ionic liquids: 1-butyl-3-methylimidazolium chloride, bistrifluoromethylsulfonylimide, and trifluoroacetate on thin-layer films of polymers of different nature including polypropylene, polyethylene terephthalate, polytetrafluoroethylene, poly(vinyl chloride), and hydrated cellulose. It was established that the hydrated cellulose film can serve as polymer matrices for the ionconducting 1-butyl-3-methylimidazolium halide salts. The hydrated cellulose additive in the ionic liquids promotes their immobilization on the poly(vinyl chloride) film.  相似文献   

16.
Tastan E  Onder S  Kok FN 《Talanta》2011,84(2):524-530
In this study, Trametes versicolor laccase was immobilized on polytetrafluoroethylene (PTFE) membranes using two different techniques, entrapment to gelatin and covalent immobilization to the surface. For surface immobilization, functional groups were formed on PTFE surface by radiofrequency (RF) plasma treatment followed by polymer grafting. Two different polymers, polyacrylamide (pAAm) and polyacrylic acid (pAAc) were tried. For polyacrylamide grafted PTFE, a two-step polymerization process was used. The membranes were first treated with hydrogen plasma and pAAm grafted PTFE (pAAm-g-PTFE) was then formed by argon plasma treatment. To produce pAAc grafted PTFE (pAAc-g-PTFE), the surface was first treated with argon plasma and AAc was then attached to the surface by heat treatment (70 °C, 6 h). For both cases, an optimized carbodiimide coupling reaction was used for laccase immobilization. Enzyme activity was measured by an oxygen electrode using guaiacol as substrate. All three biosensing membranes were characterized and compared in terms of optimum working conditions, storage stability and reusability. Our study concluded that although a higher activity was obtained by gelatin entrapped laccase, its mechanical instability and poor storage life makes the gelatin biosensor unattractive for multiple usages and for field measurements. pAAc-g-PTFE biosensor was found to be more stable and highly reusable (ca. 50 times) when compared with the other two biosensors. In addition, its sensitivity was suitable for field applications. Therefore, the pAAc-g-PTFE biosensor could be proposed as an alternative on-site detection tool for phenolic compound monitoring.  相似文献   

17.
For enhancing the compatibility and/or the interpenetration of the simultaneous interpenetrating networks (SINs) composed of polyurethane (PU) formed with uretonimine modified 4,4′‐diphenylmethane diisocyanate and vinyl ester resin (VER), a series of graft VERs consisting of different lengths of side chains were synthesized and characterized. It was found that there exists some limited short‐range order due to the strong hydrogen bonding in the graft VER network composed of butanol side chains (BO‐g‐VER). The graft VER network composed of poly(oxypropylene) (PPO) side chains (Mn: 200, 200‐g‐VER) showed compatible system, while the VER network consisting of longer PPO grafts (Mn: 390, 390‐g‐VER) exhibited microphase separated morphology. Based upon the DSC and FTIR measurements as well as the SEM and TEM observation, the lengths of side chains existing in graft VER network have great effect on the morphologies of PU/graft VER SINs. For PU/BO‐g‐VER SINs, there has been some interpenetration between the two networks because of the miscibility between the BO‐g‐VER network and the hard segments existing in the PU network. For PU/200‐g‐VER SINs, the good compatibility and/or the interpenetration between the two phases was observed, since the long‐range ordered structure of hard segments in PU phase was greatly suppressed, resulting from the excellent miscibility between the urethane groups as well as the PPO side chains existing in the 200‐g‐VER network and those in the PU network, respectively. Thus, the strong reinforcement effect of these two graft networks on the PU network and the excellent mechanical properties of the SIN systems were observed. However, the PU/390‐g‐VER SINs showed the complicated morphologies because of existing microphase‐ separated morphology of 390‐g‐VER network in itself. In this case, the enhancement effect of such a graft VER network on the PU network is limited. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 136–144, 2000  相似文献   

18.
Rzeszutek K  Chow A 《Talanta》1998,46(4):507-519
The extraction of various phenols from aqueous and organic solutions using polyurethane membrane has been investigated. The effects of solution concentration, extraction time, surface area, pH, salts, and temperature on extraction were studied. The phenols are extracted as neutral species and the extraction is governed by a combined effect of intra- and intermolecular hydrogen bonding and nonspecific hydrophobic interactions. The ether-type membrane showed higher extraction capability for the phenols than the ester-type polyurethane membrane.  相似文献   

19.
20.
Glycosylation of vanillin using amyloglucosidase from a Rhizopus mold with d-glucose, d-galactose, d-mannose, maltose, sucrose and d-sorbitol in di-isopropyl ether yielded glycosides in the range 13-53%. NMR spectral data confirmed linking between the phenolic OH of vanillin and C1 and/or C6 of the carbohydrate moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号