首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platinum(II)-based DNA intercalators where the intercalating ligand is 1,10-phenanthroline or a phenanthroline derivative and where the ancillary ligand is either achiral (e.g. ethylenediamine) or chiral (e.g. diaminocyclohexane) show a range of cytotoxicities with a defined structure-activity relationship. The most cytotoxic are those that contain methylated-phenanthroline ligands and 1S,2S-diaminocyclohexane (S,S-dach) as the ancillary ligand. We have developed a new purification method using Sep-Pak C-18 reverse phase columns, which means these metal complexes can be made faster and cheaper compared to published methods. Platinum(II)-based complexes containing imidazole, pyrrole and beta-alanine subunits, that are capable of recognising specific DNA base-pair sequences have also been synthesised. These include linear or hairpin polyamide ligands that can recognise DNA sequences up to seven base-pairs in length and contain single platinum centres capable of forming monofunctional adducts with DNA. We have now synthesised and characterised, by (1)H and (195)Pt NMR, ESI-MS and elemental analysis, the first dinuclear platinum(II) DNA sequence selective agent. Finally, using (1)H NMR we have examined the encapsulation of our platinum(II)-based DNA intercalators by cucurbit[6]uril (CB[6]). Encapsulation by CB[6] was found to not significantly change the cytotoxicity of five platinum(II)-based DNA intercalators, indicating it may have utility as a molecular carrier for improved drug delivery.  相似文献   

2.
3.
Complexes that bind and stabilize G-quadruplex DNA structures are of significant interest due to their potential to inhibit telomerase and halt tumor cell proliferation. We here report the synthesis of the first Pt(II) G-quadruplex selective molecules, containing pi-extended phenanthroimidazole ligands. Binding studies of these complexes with duplex and quadruplex d(T(4)G(4)T(4))(4) DNA were performed. Intercalation to duplex DNA was established through UV/Vis titration, CD spectroscopy, and thermal denaturation studies. Significantly stronger binding affinity of these phenanthroimidazole Pt(II) complexes to G-quadruplex DNA was observed by UV/Vis spectroscopy and competitive equilibrium dialysis studies. Observed binding constants to quadruplex DNA were nearly two orders of magnitude greater than for duplex DNA. Circular dichroism studies show that an increase in pi-surface leads to a significant increase in the thermal stability of the Pt(II)/quadruplex DNA complex. The match in the pi-surface of these phenanthroimidazole Pt(II) complexes with quadruplex DNA was further substantiated by molecular modeling studies. Numerous favorable pi-stacking interactions with the large aromatic surface of the intermolecular G-quadruplex, and unforeseen hydrogen bonds between the ancillary ethylenediamine ligands and the quadruplex phosphate backbone are predicted. Thus, both biological and computational studies suggest that coupling the square-planar geometry of Pt(II) with pi-extended ligands results in a simple and modular method to create effective G-quadruplex selective binders, which can be readily optimized for use in telomerase-based antitumor therapy.  相似文献   

4.
The development of multicomponent ligands to improve catalytic reactivity and selectivity remains a significant challenge for the synthesis of chiral building blocks. Here, a modular synthesis of structurally diverse multiligated platinum complexes, characterized by X-ray crystallography, was revealed to open up a previously inaccessible reaction space. A library of more than 16 binary component-ligated platinum complexes was identified as a practical toolkit to enable faster screening. The isolated bench-stable PtII(oxazoline)(phosphine) complex paired with a chiral copper complex exhibits fundamentally new cooperative reactivity. The newly designed Pt/Cu dual catalytic system contributed to the development of highly enantioselective vinylogous addition reactions between a Pt-activated electrophilic α,β-unsaturated carbene and a Cu-activated nucleophile, resulting in a reliable process for the asymmetric synthesis of valuable functionalized indoles in good yields and excellent enantioselectivities.  相似文献   

5.
替莫唑胺是临床上治疗胶质瘤的一线药物。我们将替莫唑胺进行化学修饰,作为配体引入到四价铂配合物中,合成了2种新型四价铂配合物P1T和P2T,并利用核磁共振氢谱及碳谱对其进行了基础表征。研究结果表明,配合物具有良好的脂溶性和较快的水解速率。进一步使用MTT法、流式细胞术、共聚焦成像及蛋白免疫印迹法对P1T和P2T的抗肿瘤活性及诱导肿瘤细胞死亡机制进行了深入的探究。结果发现,配合物P1T和P2T对胶质瘤细胞株A261表现出了较高的细胞毒性,而对正常神经细胞HT-22毒性较小,表现出了较好的细胞选择性。流式细胞术揭示配合物P1T和P2T将细胞周期阻滞在G2/M期,导致DNA损伤,最终诱导肿瘤细胞凋亡。  相似文献   

6.
The preparation of multinuclear metal complexes offers a route to novel anticancer agents and delivery systems. The potency of a novel triangular multinuclear complex containing three platinum atoms, Pt‐3 , towards breast cancer stem cells (CSCs) is reported. The trinuclear platinum(II) complex, Pt‐3 exhibits selective toxicity towards breast CSCs over bulk breast cancer cells and non‐tumorigenic breast cells. Remarkably, Pt‐3 inhibits the formation, size, and viability of mammospheres to a better extent than salinomycin, an established CSC‐potent agent, and cisplatin and carboplatin, clinically used platinum drugs. Mechanism of action studies show that Pt‐3 effectively enters breast CSCs, penetrates the nucleus, induces genomic DNA damage, and prompts caspase‐dependent apoptosis. To the best of our knowledge, Pt‐3 is the first multinuclear platinum complex to selectively kill breast CSCs over other breast cell types.  相似文献   

7.
Electrospray ionisation mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy were used to compare the binding of mononuclear nickel, ruthenium and platinum complexes to double stranded DNA (dsDNA) and quadruplex DNA (qDNA). CD studies provided evidence for the binding of intact complexes of all three metal ions to qDNA. ESI mass spectra of solutions containing platinum or ruthenium complexes and qDNA showed evidence for the formation of non-covalent complexes consisting of intact metal molecules bound to DNA. However, the corresponding spectra of solutions containing nickel complexes principally contained ions consisting of fragments of the initial nickel molecule bound to qDNA. In contrast ESI mass spectra of solutions containing nickel, ruthenium or platinum complexes and dsDNA only showed the presence of ions attributable to intact metal molecules bound to DNA. The fragmentation observed in mass spectral studies of solutions containing nickel complexes and qDNA is attributable to the lower thermodynamic stability of the former metal complexes relative to those containing platinum or ruthenium, as well as the slightly harsher instrumental conditions required to obtain spectra of qDNA. This conclusion is supported by the results of tandem mass spectral studies, which showed that ions consisting of intact nickel complexes bound to qDNA readily undergo fragmentation by loss of one of the ligands initially bound to the metal. The ESI-MS results also demonstrate that the binding affinity of each of the platinum and ruthenium complexes towards qDNA is significantly less than that towards dsDNA.  相似文献   

8.
The synthesis and characterization of metal poly-yne polymers containing disilane, disiloxane and phosphine groups in the main chain are described. The platinum and palladium poly-yne polymers were synthesized by polycondensation reactions between a metal chloride and an α, ω-bisethynyl complex in amines in the presence of cuprous iodide as a catalyst. The nickel poly-yne polymers were synthesized by an alkynyl ligand exchange reaction between a nickel acetylide and an α, ω-bisethynyl complex in diethylamine in the presence of cuprous iodide as a catalyst. The reaction of the platinum poly-yne polymer, containing disiloxane groups in the main chain, with copper (I) salts afforded adducts of η-2-bonded σ-acetylide polymer complexes. The reactions of the palladium poly-yne polymer, containing phosphine groups in the main chain, with transition-metal carbonyl complexes afforded polymer complexes which have phosphorus in the main chain-transition-metal bonds. A concentrated solution of the platinum poly-yne polymer containing disiloxane groups in the main chain forms a lyotropic liquid crystal in dichloromethane or 1, 2-dichloroethane.  相似文献   

9.
《Analytical letters》2012,45(8):1505-1518
Abstract

A simple and rapid differential pulse polarographic assay for measurement of platinum drug binding to DNA is described. The method makes it possible to determine the free (unbound) platinum compound in the presence of DNA or platinum - DNA complex. The method is based on the polarographic catalytic hydrogen current yielded by platinum (II) or (IV) complexes in formaldehyde - hydrazine - sulphuric acid background electrolyte, in which DNA or platinum - DNA complex precipitate. The lower level of analytical utility of this method is c. 1 × 10?9 M.  相似文献   

10.
The synthesis and mesomorphic properties of a homologous series of N-(2-hydroxy-4-n-alkoxybenzylidene)-4'-n-decylphenylanilines and their platinum(II) and oxovanadium(IV) complexes are reported. All the ligands and their metal chelates exhibit enantiotropic mesophases, predominantly smectic A and smectic C phases. The transition temperatures and enthalpies have been determined for most of the compounds. The platinum(II) complexes have higher melting points and mesophase thermal stabilities. However, the oxovanadium(IV) complexes have a wider thermal range for the mesophase. Both platinum(II) and oxovanadium(IV) complexes containing only a chain on the biphenyl moiety exhibit a nematic phase.  相似文献   

11.
Twenty-six derivatives of [SalenMn(III)](+) (1) bearing halogen, nitro, amino, ether, alkyl, or aryl substituents on the aromatic rings and/or at the imine positions or containing 1,3-propylene-, 1,2-phenylene-, 1,2-cyclohexane-, or 1,2-diphenylethylenediamine in place of ethylenediamine as the bridging moiety have been synthesized. The DNA binding/cleaving properties of these complexes in the presence of terminal oxidants have been examined using DNA affinity cleaving techniques. Active derivatives produced DNA cleavage from the minor groove at sites containing multiple contiguous A:T base pairs. For aryl-substituted derivatives, DNA cleavage efficiency was found to vary with both the identity and position of attachment of substituents. The precise patterns of cleavage at A:T target sites varied with the position of attachment of substituents, but not with the identity of the substituents. The results suggest that substituents alter specificity through both steric and electronic effects. The 3,3'-difluoro and -dichloro derivatives produced cleavage patterns that match those of the parent complex, suggesting that the activated form of 1 produces cleavage from an orientation in which the concave edge of the complex faces away from the floor of the DNA minor groove. Bridge modifications yield complexes with reduced DNA cleaving activity relative to 1. DNA cleaving efficiency was found to vary with both the structure and stereochemistry of the bridge. Cleavage efficiency for the complex derived from (R,R)-cyclohexanediamine was 5 times greater than that for the (S,S) enantiomer. Cleavage patterns produced by the enantiomeric complexes at A:T rich target sites were different, demonstrating enantiospecific recognition and cleavage of right-handed double-helical DNA.  相似文献   

12.
张小玲  阎宏涛 《中国化学》2002,20(10):1055-1059
A selective and sensitive method for determination of platinum and palladium(Ⅱ)in an aqueous solution simultaneously by laser thermal lens spectrometry,based on the complex reaction of 2-(3,5-dichloropyridylazo)-5-dimethylaminoamiline(3,5-diCl-PADMA) with platinum and palladium,has been developed.It is shown that the palladium complex can be fromed at room temperature, while the platinum complex can be only formed after being heated in a boiling water bath.By using this difference of reaction temperature and the characteristic of the complexes mentioned above,the method for simultaneous determination of platinum and palladium was established in an aqueous solution without a pre-separation.The results show that the dynamic linear ranges of determination for platinum and palladium are 0.005-0.04μg/mL and 0.005-0.25μg/mL respectively,and that the detection limits are both 0.002/μg/mL.The method has been applied to the determination of platinum and palladium simultaneously in alloy and catalyst samples with satisfactory results.  相似文献   

13.
We investigated the effects of antitumor-active tetrazolato-bridged dinuclear platinum(II) complexes [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-tetrazolato-N(1),N(2))](2+) (1) and [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-tetrazolato-N(2),N(3))](2+) (2) on the higher-order structure of a large DNA molecule (T4 phage DNA, 166 kbp) in aqueous solution through single-molecule observation by fluorescence microscopy. Complexes 1 and 2 cause irreversible compaction of DNA through an intermediate state in which coil and compact parts coexist in a single DNA molecule. The potency of compaction is in the order 2 > 1 ? cisplatin. Transmission electron microscopic observation showed that both complexes collapsed DNA into an irregularly packed structure. Circular dichroism measurements revealed that the dinuclear platinum(II) complexes change the secondary structure of DNA from the B to C form. These characteristics of platinum(II) complexes are markedly different from those of the usual condensing agents such as spermidine(3+) and [Co(III)(NH(3))(6)](3+). The ability to cause DNA compaction by the platinum(II) complexes is discussed in relation to their potent antitumor activity.  相似文献   

14.
As part of an effort to develop a spectroscopic structure-property relationship in platinum acetylide oligomers, we have prepared a series of mesoionic bidentate Pt(PBu3)2L2 compounds containing sydnone groups. The ligand is the series o-Syd-(C6H4-C[triple bond]C)n-H, where n = 1-3, designated as Syd-PEn-H. The terminal oligomer unit consists of a sydnone group ortho to the acetylene carbon. We synthesized the platinum complex (Syd-PEn-Pt), the unmodified ligands (PEn-H), and the unmodified platinum complexes (PEn-Pt). The compounds were characterized by various methods, including X-ray diffraction, 13C NMR, ground-state absorption, fluorescence, phosphorescence, and laser flash photolysis. From solving the structure of Syd-PE1-Pt, we find the angle between the sydnone group and the phenyl group is 45 degrees . By comparison of the 13C NMR spectra of the sydnone-containing ligands, the sydnone complexes with the corresponding unmodified ligands and complexes not containing the sydnone group, the sydnone group is shown to polarize the nearest acetylenes and have a charge-transfer interaction with the platinum center. Ground-state absorption spectra of the complexes in various solvents give evidence that the Syd-PE1-Pt complex has an excited state less polar than the ground state, while the PE1-Pt complex has an excited state more polar than the ground state. In all the higher complexes the excited state is more polar than the ground state. The phosphorescence spectrum of the Syd-PE1-Pt complex has an intense vibronic progression distinctly different from the PE1-Pt complex. The sydnone effect is small in Syd-PE2-Pt and negligible in Syd-PE3-Pt. From absorption and emission spectra, we measured the singlet-state energy E(S), the triplet-state energy E(T), and the singlet-triplet splitting Delta E(ST). By comparison with energies obtained from the unmodified complexes, attachment of the sydnone lowers E(S) by approximately 0.1 eV and raises E(T) by approximately 0.1 eV. As a result, the sydnone group lowers Delta E(ST) by approximately 0.2 eV. The trends suggest one of the triplet-state singly occupied molecular orbitals (SOMOs) is localized on the sydnone group, while the other SOMO resides on the rest of the ligand.  相似文献   

15.
The synthesis of platinum bisphosphine complexes of biphenyl- 2,2'-dichalcogenates and the oxides of dibenzo[1,2]dithiin and related ligand systems by oxidative addition to [Pt(PPh(3))(4)] is reported. We also describe the synthesis of a new compound, dibenzothiophen-4-yldiselenide and its simple platinum complex (obtained by oxidative addition). All complexes have been fully characterised, principally by using multinuclear NMR spectroscopy and in six cases by means of single-crystal X-ray diffraction studies. The majority are simple S/S or Se/Se complexes, however the addition of dibenzo[1,2]dithiin trioxide to [Pt(PPh(3))(4)] gives a bimetallic system, [Pt[2-[S(O)],2'-[S(O)(2)]-biphen}(PPh(3))](2), containing a central Pt(2)S(2)O(2) core in which the ligand behaves as a tridentate S,S,O donor.  相似文献   

16.
We present the synthesis of the isobicyclo‐DNA building blocks with the nucleobases A, C, G and T, as well as biophysical and biological properties of oligonucleotides derived thereof. The synthesis of the sugar part was achieved in 5 steps starting from a known intermediate of the tricyclo‐DNA synthesis. Dodecamers containing single isobicyclo‐thymidine incorporations, fully modified A‐ and T‐containing sequences, and fully modified oligonucleotides containing all four bases were synthesized and characterized. Isobicyclo‐DNA forms stable duplexes with natural nucleic acids with a pronounced preference for DNA over RNA as complements. The most stable duplexes, however, arise by self‐pairing. Isobicyclo‐DNA forms preferentially B‐DNA‐like duplexes with DNA and A‐like duplexes with complementary RNA as determined by circular dichroism (CD) spectroscopy. Self‐paired duplexes show a yet unknown structure, as judged from CD spectroscopy. Biochemical tests revealed that isobicyclo‐DNA is stable in fetal bovine serum and does not elicit RNaseH activity.  相似文献   

17.
An attempt has been made to resolve (diallylether) platinum(II) chloride. The complex was transformed by methoxide addition to a binuclear product containing carbon-platinum σ bonds. After bridge splitting of the binuclear alkyl derivative with (S)-α-methylbenzylamine, fractional crystallization gave two diastereoisomer complexes. Treatment of these with HCl gave optically inactive (diallylether)platinum(II) ch1oride. The molecular structure of one diastereoisomeric product was established by X-ray analysis.  相似文献   

18.
Naphthalimide has emerged as an interesting DNA intercalator and possessed attracting antitumor properties. In this context, naphthalimide group was linked to platinum(IV) core to construct a series of new mono naphthalimide platinum(IV) derivatives. The title compounds exert effective antitumor activities to the tested tumor cells lines in vitro, especially the one with propionyl chain displays comparable or even better bioactivities than platinum(II) reference drugs cisplatin and oxaliplatin. Moreover, the mono naphthalimide platinum(IV) derivative displays comparable tumor growth inhibitory competence against CT26 xenograft tumors in BALB/c mice in vivo without severe toxic effects in contrast to oxaliplatin. A dual DNA damage mechanism was proven for the title complex. Both naphthalimide ligand and the liberated platinum(II) moiety could generate DNA lesions to tumor cells synergistically and active the apoptotic pathway by up-regulating the expression of caspase 9 and caspase 3. Meanwhile, the conversion of platinum(II) drug into tetravalent form by incorporating naphthalimide moiety increases the uptake of platinum in whole cells and DNA remarkably. All these facts might be the factors for the title platinum(IV) complexes to overcome platinum(II) drug resistance. Additionally, the mono naphthalimide platinum(IV) complex could interact with human serum albumin by hydrogen bond and van der Waals force which would further influence their storage, transport and bioactivities.  相似文献   

19.
The synthesis and biological activity of three heteronuclear platinum-copper complexes based on 3-Clip-Phen are reported. These rigid complexes have been designed to alter the intrinsic mechanism of action of both the platinum moiety and the Cu(3-Clip-Phen) unit. The platinum centers of two of these complexes are coordinated to a 3-Clip-Phen moiety, an ammine ligand and two chlorides, which are either cis or trans to each other. The third complex comprises two 3-Clip-Phen units and two chloride ligands bound in a trans fashion to the platinum ion. DNA-cleavage experiments show that the complexes are highly efficient nuclease agents. In addition, a markedly difference in their aptitude to perform direct double-strand cleavage is observed, which appears to be strongly related to the ability of the platinum unit to coordinate to DNA. Indeed, complex 6 is unable to coordinate to DNA, which is reflected by its incapability to carry out double-strand breaks. Nonetheless, this complex exhibits efficient DNA-cleavage activity, and its cytotoxicity is high for several cell lines. Complex 6 shows better antiproliferate activity than both cisplatin and Cu(3-Clip-Phen) toward most cancer cell lines. Furthermore, the cytotoxicity observed for 1 is for most cell lines close to that of cisplatin, or even better. Cu(3-Clip-Phen) induces very low cytotoxic effects, but a marked migratory activity. Complex 6 presents DNA-cleavage properties comparable to the one of Cu(3-Clip-Phen), but it does not show any migratory activity. Interestingly, both Cu(3-Clip-Phen) and 6 induces vacuolisation processes in the cell in contrast to complex 1 and cisplatin. Thus, the four complexes cisplatin tested, Cu(3-Clip-Phen), 1 and 6 stimulate different cellular responses.  相似文献   

20.
Molecular models of the complexes between actinomycin D and 14 different DNA hexamers were built based on the X-ray crystal structure of the actinomycin–d(GAAGCTTC)2 complex. The DNA sequences included the canonical GpC binding step flanked by different base pairs, nonclassical binding sites such as GpG and GpT, and sites containing 2,6-diamino- purine. A good correlation was found between the intermolecular interaction energies calculated for the refined complexes and the relative preferences of actinomycin binding to standard and modified DNA. A detailed energy decomposition into van der Waals and electrostatic components for the interactions between the DNA base pairs and either the chromophore or the peptidic part of the antibiotic was performed for each complex. The resulting energy matrix was then subjected to principal component analysis, which showed that actinomycin D discriminates among different DNA sequences by an interplay of hydrogen bonding and stacking interactions. The structure–affinity relationships for this important antitumor drug are thus rationalized and may be used to advantage in the design of novel sequence-specific DNA-binding agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号