首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EIGEN THEORY OF VISCOELASTIC MECHANICS FOR ANISOTROPIC SOLIDS   总被引:4,自引:0,他引:4  
Anisotropic viscoelastic mechanics is studied under anisotropic subspace. It is proved that there also exist the eigen properties for viscoelastic medium. The modal Maxwell's equation, modal dynamical equation (or modal equilibrium equation) and modal compatibility equation are obtained. Based on them, a new theory of anisotropic viscoelastic mechanics is presented. The advantages of the theory are as follows: 1) the equations are all scalar, and independent of each other. The number of equations is equal to that of anisotropic subspaces, 2) no matter how complicated the anisotropy of solids may be, the form of the definite equation and the boundary condition are in common and explicit, 3) there is no distinction between the force method and the displacement method for statics, that is, the equilibrium equation and the compatibility equation are indistinguishable under the mechanical space, 4) each model equation has a definite physical meaning, for example, the modal equations of order one and order two express the volume change and shear deformation respectively for isotropic solids, 5) there also exist the potential functions which are similar to the stress functions of elastic mechanics for viscoelastic mechanics, but they are not man-made, 6) the final solution of stress or strain is given in the form of modal superimposition, which is suitable to the proximate calculation in engineering.  相似文献   

2.
Wave propagation in anisotropic dissipative bodies is considered through the form of inhomogeneous waves. The dissipativity of the body is characterized by a restriction of thermodynamic character on the viscoelastic tensor. As a consequence, the divergence of the usual (time-averaged) energy flux is proved to be negative. This in turn is shown to imply that the amplitude of the wave decays in the direction of the energy flux and the angle, subtended by the imaginary part of the wave vector and the energy flux, is acute. Moreover, the symmetry of the viscoelastic tensor and the positive definiteness of its real part imply that also the imaginary part of the wave vector subtends an acute angle with the energy flux. Such properties are shown to hold in both solids and fluids. Because of anisotropy, the angle subtended by the real and imaginary parts of the wave vector need not be acute, which means that the amplitude may increase in the direction of phase propagation.  相似文献   

3.
The Stroh formalism is employed to discuss the existence of transient surface waves on a viscoelastic anisotropic hall-space. The compatibility conditions, obtained using the integral formulation of Lothe and Barnett [13, 14], are examined on the basis of an asymptotic expansion of the viscoelastic kernel and a separation of space variables. Some previous results on elastic media are extended to viscoelasticity, exploiting the consequences of the second law of thermodynamics. It is found that all the allowed transient surface modes take the form of inhomogeneous plane waves whose amplitude exponentially decays along the propagation direction on the surface. Special solutions are derived explicitly for one-component surface waves where transient modes are admitted also in those cases in which stationary waves cannot occur. Mathematics Subject Classifications (2000) 74D05, 74J15.  相似文献   

4.
This study discusses wave propagation in perhaps the most general model of a poroelastic medium. The medium is considered as a viscoelastic, anisotropic and porous solid frame such that its pores of anisotropic permeability are filled with a viscous fluid. The anisotropy considered is of general type, and the attenuating waves in the medium are treated as the inhomogeneous waves. The complex slowness vector is resolved to define the phase velocity, homogeneous attenuation, inhomogeneous attenuation, and angle of attenuation for each of the four attenuating waves in the medium. A non-dimensional parameter measures the deviation of an inhomogeneous wave from its homogeneous version. An numerical model of a North-Sea sandstone is used to analyze the effects of the propagation direction, inhomogeneity parameter, frequency regime, anisotropy symmetry, anelasticity of the frame, and viscosity of the pore-fluid on the propagation characteristics of waves in such a medium.  相似文献   

5.
Homogeneous and two-layer half-spaces consisting of an anisotropic elastic, isotropic viscoelastic, or poroelastic material are considered. The Kelvin–Voigt model and the model with the Abel kernel are used as models of the viscoelastic material; the poroelastic material is studied within the framework of the model of the compressible Biot material. The case where the half-space contains a cavity is also considered. Propagation of surface waves is studied by the boundary element method. The numerical solution involves the method of collocations for a regularized boundary integral equation.  相似文献   

6.
A study is made of methods for solving linear viscoelastic problems on the basis of the Volterra concept — representation of irrational functions of integral operators as operator power series (analogues of Taylor series). It is pointed out that these series converge weakly. The results of development and substantiation of a new mathematical method for solution of the above problems are summarized. It is based on representing irrational functions of integral operators by operator continued fractions, which converge well. Solutions to certain linear viscoelastic problems for anisotropic bodies are given  相似文献   

7.
In this paper, we are interested in developing thermodynamically consistent constitutive equations for fiber-reinforced nonlinearly viscoelastic bodies, in particular for transversely isotropic nonlinearly viscoelastic solids, in isothermal processes. It follows from results in the theory of algebraic invariants that constitutive equations for such materials can be expressed in terms of functions of 18 independent invariants associated with deformation and fiber orientation: 10 of them are isotropic invariants and 8 of them are associated with the deformation and the orientation of the fiber. Among the 8 anisotropic invariants just 6 are related to the viscoelastic response. The terms in the Cauchy stress tensor associated to these 6 invariants are analyzed with respect to thermodynamical consistency, and we obtain restrictions for the corresponding constitutive coefficients. This framework is applied to viscoelastic potentials within the context of biomaterials.  相似文献   

8.
提出一种分析粘弹性结构自振特性的数值方法,通过弹性等效空间特征值问题及一个代数方程的求解,得出粘弹性结构的频率及振型。此外建立了薄板的粘弹性动力方程并给出相应的求解方法。文中做了数值验证。  相似文献   

9.
The integral equation method is presented for elastodynamic problems of inhomogeneous anisotropic bodies. Since fundamental solutions are not available for general inhomogeneous anisotropic media, we employ the fundamental solution for homogeneous elastostatics. The terms induced by material inhomogeneity and inertia force are regarded as body forces in elastostatics, and evaluated in the form of volume integrals. The scattering problems of elastic waves by inhomogeneous anisotropic inclusions are investigated for some test cases. Numerical results show the significant effects of inhomogeneity and anisotropy of materials on wave propagations.  相似文献   

10.
A new method is proposed to solve some problems of linear viscoelasticity for anisotropic bodies. The method uses a branching continued fraction to approximate an irrational multivariable function. Such an approach allows obtaining a linear operator as an approximation of a multivariable operator function. The deformation of a cracked composite body with a plastic matrix is analyzed as an example. Both composite components are assumed to exhibit viscoelastic properties  相似文献   

11.
The Kelvin approach describing the structure of the generalized Hooke’s law is used to analyze the potential model of anisotropic creep of materials. The creep equations of incompressible transversely isotropic, orthotropic materials and those with cubic symmetry are considered. The eigen coefficients of anisotropy and eigen tensors for the anisotropy tensors of these materials are determined.  相似文献   

12.
The attenuation and dispersion of elastic waves in fluid-saturated rocks due to the viscosity of the pore fluid is investigated using an idealized exactly solvable example of a system of alternating solid and viscous fluid layers. Waves in periodic layered systems at low frequencies are studied using an asymptotic analysis of Rytov’s exact dispersion equations. Since the wavelength of shear waves in fluids (viscous skin depth) is much smaller than the wavelength of shear or compressional waves in solids, the presence of viscous fluid layers necessitates the inclusion of higher terms in the long-wavelength asymptotic expansion. This expansion allows for the derivation of explicit analytical expressions for the attenuation and dispersion of shear waves, with the directions of propagation and of particle motion being in the bedding plane. The attenuation (dispersion) is controlled by the parameter which represents the ratio of Biot’s characteristic frequency to the viscoelastic characteristic frequency. If Biot’s characteristic frequency is small compared with the viscoelastic characteristic frequency, the solution is identical to that derived from an anisotropic version of the Frenkel–Biot theory of poroelasticity. In the opposite case when Biot’s characteristic frequency is greater than the viscoelastic characteristic frequency, the attenuation/dispersion is dominated by the classical viscoelastic absorption due to the shear stiffening effect of the viscous fluid layers. The product of these two characteristic frequencies is equal to the squared resonant frequency of the layered system, times a dimensionless proportionality constant of the order 1. This explains why the visco-elastic and poroelastic mechanisms are usually treated separately in the context of macroscopic (effective medium) theories, as these theories imply that frequency is small compared to the resonant (scattering) frequency of individual pores.  相似文献   

13.
Fundamental theory presented in Part (Ⅰ) is used to analyze anisotropic plane stress problems. First we construct the generalized variational principle to enter Hamiltonian system and get Hamiltonian differential operator matrix, then we solve eigen problem; finally, we present the process of obtaining analytical solutions and semi-analytical solutions for anisotropic plane stress porblems on rectangular area.  相似文献   

14.
Fundamental theory presented in Part (I)[8] is used to analyze anisotropic plane stress problems. First we construct the generalized variational principle to enter Hamiltonian system and get Hamiltonian differential operator matrix; then we solve eigen problem; finally, we present the process of obtaining analytical solutions and semi-analytical solutions for anisotropic plane stress problems on rectangular area.  相似文献   

15.
The results obtained in developing and applying the method of dynamic photoelasticity to two-dimensional problems in the mechanics of anisotropic bodies are reviewed. The theory behind the method and its engineering implementation are described. The capabilities of the method are illustrated by solving specific nonstationary problems: dynamic stress concentration, diffraction of longitudinal and transverse waves by free and reinforced holes, dynamic fracture of orthotropic plates with holes and cracks under impulsive and explosive loads  相似文献   

16.
In many cases, geological formations are composed of layers of dissimilar properties whose thicknesses are small compared to the wavelength of the seismic signal, as for instance, a sandstone formation that has intra-reservoir thin mudstone layers. A proper model is represented by an anisotropic (transversely isotropic) and viscoelastic stress–strain relation. In this work, we consider a sandstone reservoir, such as the Utsira formation, saturated with CO2 and use White’s mesoscopic model to describe the energy loss of the seismic waves. The mudstone layers are assumed to be isotropic, poroelastic and lossless. Then, Backus averaging provides the complex and frequency-dependent stiffnesses of the transversely isotropic (TI) long-wavelength equivalent medium. We obtain the associated wave velocities and quality factors as a function of frequency and propagation direction, while the synthetic seismograms are computed with a finite-element (FE) method in the space-frequency domain. In this way, the frequency-dependent properties of the medium are modeled exactly, without the need of approximations with viscoelastic mechanical models. Numerical simulations of synthetic seismograms show results in agreement with the predictions of the theories and significant differences due to attenuation and anisotropic effects compared to the ideal isotropic and lossless rheology.  相似文献   

17.
In thermal “passive” microrheology, the random Brownian motion of anisotropically shaped probe particles embedded within an isotropic viscoelastic material can be used to extract the material’s frequency-dependent linear viscoelastic modulus. We unite the existing theoretical frameworks for separately treating translational and rotational probe motion in a viscoelastic material by extending the generalized Stokes–Einstein relation (GSER) into a tensorial form that reflects simultaneous equilibrium translational and rotational fluctuations of one or more anisotropic probe particles experiencing viscoelastic drag. The tensorial GSER provides a formal basis for interpreting the complex Brownian motion of anisotropic probes in a viscoelastic material. Based on known hydrodynamic calculations of the Stokes mobility of highly symmetric shapes in a simple viscous liquid, we show simple examples of the tensorial GSER for spheroids and half-stick, half-slip Janus spheres.  相似文献   

18.
The effect of viscoelasticity on the guided waves propagation in viscoelastic plate has been investigated according to multi-aspect. To this purpose, an extension of the Legendre polynomial method is proposed to formulate the guided waves equation in orthotropic viscoelastic plate composed of carbon–epoxy. The validity of the proposed Legendre polynomial method is illustrated by comparison with available data. The convergence of the method is discussed through a numerical example. The hysteretic and Kelvin–Voigt viscoelastic models are used to integrate the imaginary part of the complex stiffness matrix associated with the viscoelastic plate in this study. Accordingly, both viscoelastic models do not affect on the dispersion curves results. However, appreciable effects are seen in the attenuation curves. Also, the sensitivity of the guided waves propagation caused by variations of elastic and viscoelastic modulus has been studied in detail. Finally, the advantages of the Legendre polynomial method are described.  相似文献   

19.
The anisotropy matrices (tensors) of quasielastic (Cauchy-elastic) materials were obtained for all classes of crystallographic symmetries in explicit form. The fourth-rank anisotropy tensors of such materials do not have the main symmetry, in which case the anisotropy matrix is not symmetric. As a result of introducing various bases in the space of symmetric stress and strain tensors, the linear relationship between stresses and strains is represented in invariant form similar to the form in which generalized Hooke’s law is written for the case of anisotropic hyperelastic materials and contains six positive Kelvin eigen moduli. It is shown that the introduction of modified rotation-induced deformation in the strain space can cause a transition to the symmetric anisotropy matrix observed in the case of hyperelasticity. For the case of transverse isotropy, there are examples of determination of the Kelvin eigen moduli and eigen bases and the rotation matrix in the strain space. It is shown that there is a possibility of existence of quasielastic media with a skew-symmetric anisotropy matrix with no symmetric part. Some techniques for the experimental testing of the quasielasticity model are proposed.  相似文献   

20.
基于粘弹性广义有限单元和接触力元,发展了适用于多体相互作用系统非连续变形分析的粘弹性数值分析方法,通过虚功原理,给出了其分区参变量最小势能原理,从而阐明了其理论基础。粘弹性广义有限单元的本构关系可由粘弹性退化为弹性或刚性,因此本文所提出的方法可对由刚体、弹性体和粘弹性体所构成的复杂多体系统在外荷载作用下的力学行为进行数值模拟,同时能够比本文精确地直接得到多体之间的接触应力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号