首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
Nucleosides of 5-substituted-1,2,4-triazole-3-carboxamides were prepared by the acid-catalyzed fusion procedure and by glycosylation of the appropriate trimethylsilyl derivative. The following nucleosides were obtained in two steps starting from methyl 4-substituted-1,2,4-triazole-3-carboxylates: 5-chloro-1-β- D -ribofuranosyl-1,2,4-triazole-3-carboxamide ( 6 ), 3-chloro-1-β- D -ribofuranosyl-1,2,4-triazole-5-carboxamide ( 5 ), 3-nitro-1-β- D -ribofuranosyl-1,2,4-triazole-5-carboxamide ( 12 ), 3-amino-1-β- D -ribofuranosyl-1,2,4-triazole-5-carboxamide ( 13 ), 5-methyl-1-β- D -ribofuranosyl-1,2,4-triazole-3-carboxamide ( 15 ), and 3-methyl-1-β- D -ribofuranosyl-1,2,4-triazole-5-carboxamide ( 16 ). In addition, 5-amino-1-β- D -ribofuranosyl-1,2,4-triazole-3-carboxamide ( 7 ), and 1-β- D -ribofuranosyl-1,2,4-triazole-3-carboxamide-5-thiol ( 8 ) were prepared from 6 .  相似文献   

2.
A new oleanane-type triterpenoid saponin, named platycoside N (1), together with six known saponins, was isolated from the roots of Platycodon grandiflorum. On the basis of acid hydrolysis, comprehensive spectroscopic data analyses and comparison with the spectral data of the known compounds, its structure was elucidated as 3-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl-2β,3β,16α,23-tetrahydroxyolean-12-en-28-oic acid 28-O-β-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranoside. The six known compounds were platycodin D (2), deapioplatycodin D (3), platycodin D3 (4), deapioplatycodin D3 (5), platycoside E (6) and deapioplatycoside E (7).  相似文献   

3.
云南重楼中的新甾体皂苷   总被引:3,自引:0,他引:3  
从云南重楼Paris polyphylla Sm. var. yunnanensis(France. )Hand.-Mazz.的干燥根茎中分离鉴定了4个甾体皂苷(1~4), 其中化合物1是新化合物, 采用波谱技术鉴定其结构为24-O-β-D-吡喃半乳糖基-(23S,24S)-螺甾-5, 25(27)-二烯-1β,3β,23,24-四醇-1-O-β-D-吡喃木糖基(1→6)-β-D-吡喃葡萄糖基(1→3)[α-L-吡喃鼠李糖基(1→2)]-β-D-吡喃葡萄糖苷.  相似文献   

4.
Three cholestane bisdesmosides, together with the corresponding aglycone, were isolated from the whole plant of Reineckia carnea. By detailed analysis of the 1D‐ and 2D‐NMR spectra, chemical methods, and comparison with spectral data of known compounds, the structures were determined to be (1β,3β,16β,22S)‐cholest‐5‐ene‐1,3,16,22‐tetrol ( 1 ), (1β,3β,16β,22S)‐cholest‐5‐ene‐1,3,16,22‐tetrol 1,16‐di(β‐D ‐glucopyranoside) ( 2 ), (1β,3β,16β,22S)‐cholest‐5‐ene‐1,3,16,22‐tetrol 1‐[Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranoside] 16‐(β‐D ‐glucopyranoside) ( 3 ), (1β,3β,16β,22S)‐cholest‐5‐ene‐1,3,16,22‐tetrol 1‐(β‐D ‐glucopyranoside) 16‐(3‐O‐acetyl‐β‐D ‐glucopyranoside) ( 4 ). Compounds 3 and 4 appeared to be new compounds, while compound 1 was isolated for the first from a natural source. Compound 2 was isolated from the genus Reineckia for the first time.  相似文献   

5.
Four new steroidal saponins, named disporosides A–D ( 1 – 4 ), corresponding to (3β,25R)‐3‐[(β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl)oxy]‐5β‐spirostan ( 1 ), (3β,25R)‐3‐[(β‐D ‐glucopyranosyl‐(1→2)‐[6‐O‐hexadecanoyl‐β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl)oxy]‐5β‐spirostan ( 2 ), (3β,22R,25R)‐26‐[(β‐D ‐glucopyranosyl)oxy]‐3‐[(β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl)oxy]‐5β‐furostan ( 3 ), and (3β,22R,25R)‐26‐[(β‐D ‐glucopyranosyl)oxy]‐3‐[(β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl)oxy]‐5β‐furostan ( 4 ), have been isolated from the fresh rhizomes of Disporopsis pernyi, together with the three known compounds Ys‐I, agavoside B, and (3β,25R)‐3‐[(β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranosyl)oxy]‐5α‐spirostan‐12‐one. Their structures were elucidated by spectroscopic analyses, chemical transformations (acid hydrolysis), and comparison with literature data.  相似文献   

6.
A new eremophilane-type sesquiterpene,1α,8β,10β-trihydroxy-6β-(2-methylacryloyl)oxyeremophil-7(11)-en-8α,12-olide, was isolated from the roots of Ligularia virgaurea.Its structure was established on the basis of various spectroscopic analyses, including the 1D,2D NMR techniques and HR-ESI-MS.  相似文献   

7.
Three new furostanol glycosides, named ciliatasides A, B, and C ( 1 – 3 , resp.), have been isolated from the roots of Digitalis ciliata, along with two known furostanol glycosides. The structures of the new compounds were identified as (2α,3β,5α,14β,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐2‐hydroxyfurost‐20(22)‐en‐3‐yl β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranoside ( 1 ), (2α,3β,5α,14β,22R)‐26‐(β‐D ‐glucopyranosyloxy)‐2‐hydroxy‐22‐methoxyfurost‐25(27)‐en‐3‐yl β‐D ‐galactopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 2 ), and (2α,3β,5α,14β,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐2,22‐dihydroxyfurostan‐3‐yl β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranoside ( 3 ).  相似文献   

8.
Two new triterpene glycosides, 1 and 2 , together with three known ones, were isolated from roots of Acanthophyllum laxiusculum Schiman ‐Czeika . The structures of the new compounds were established by extensive 1D‐ and 2D‐NMR spectroscopic experiments and MS analyses as 23‐Oβ‐D ‐galactopyranosylgypsogenic acid 28‐O‐{β‐D ‐glucopyranosyl‐(1→2)‐6‐O‐[4‐carboxy‐3‐hydroxy‐3‐methyl‐1‐oxobutyl]‐β‐D ‐glucopyranosyl‐(1→6)}‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranosyl ester ( 1 ) and gypsogenic acid 28‐O‐{β‐D ‐glucopyranosyl‐(1→2)‐6‐O‐[4‐carboxy‐3‐hydroxy‐3‐methyl‐1‐oxobutyl]‐β‐D ‐glucopyranosyl‐(1→6)}‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranosyl ester ( 2 ).  相似文献   

9.
Four new furostanol steroid saponins, borivilianosides A–D ( 1 – 4 , resp.), corresponding to (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐hydroxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 1 ), (3β,5α,22R,25R)‐ 26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 2 ), (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 3 ), and (3β,5α,25R)‐26‐(β‐D ‐glucopyranosyloxy)furost‐20(22)‐en‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 4 ), together with the known tribuluside A and (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside were isolated from the dried roots of Chlorophytum borivilianum Sant and Fern . Their structures were elucidated by 2D ‐NMR analyses (COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry.  相似文献   

10.
Four new triterpenoid saponins, pachystegiosides A ( 1 ), B ( 2 ), C ( 3 ), and D ( 4 ), were isolated from the roots of Acanthophyllum pachystegium K. H. Their structures were elucidated by means of a combination of homo‐ and heteronuclear 2D‐NMR techniques (COSY, TOCSY, NOESY, HSQC, and HMBC) and by FAB‐MS. The new compounds were characterized as 3‐O‐{Oβ‐D ‐galactopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucuronopyranosyl}quillaic acid 28‐{Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[3,4‐di‐O‐acetyl‐β‐D ‐quinovopyranosyl‐(1→4)]‐β‐D ‐fucopyranosyl}ester ( 1 ), 3‐O‐{Oβ‐D ‐galactopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucuronopyranosyl}quillaic acid 28‐{Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[4‐O‐acetyl‐β‐D ‐quinovopyranosyl‐(1→4)]‐β‐D ‐fucopyranosyl} ester ( 2 ), 3‐O‐{Oβ‐D ‐galactopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucuronopyranosyl}quillaic acid 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[4‐O‐acetyl‐β‐D ‐quinovopyranosyl‐(1→4)]‐β‐D ‐fucopyranosyl} ester ( 3 ), and gypsogenic acid 28‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐Oβ‐D ‐glucopyranosyl‐(1→6)‐Oβ‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐galactopyranosyl] ester ( 4 ).  相似文献   

11.
The four new cycloartane (=9,19‐cyclolanostane) glycosides 1 – 4 were isolated from the aerial parts of Thalictrum fortunei (Ranunculaceae). The structures of these new glycosides were elucidated as (3β,16β,24S)‐cycloartane‐3,16,24,25,30‐pentol 3,25‐di‐β‐D ‐glucopyranoside ( 1 ), (3β,16β,24S)‐24‐(acetyloxy)cycloartane‐3,16,25,30‐tetrol 3,25‐di‐β‐D ‐glucopyranoside ( 2 ), (3β,16β,24S)‐24‐(acetyloxy)‐3‐(β‐D ‐glucopyranosyloxy)cycloartane‐16,25,30‐triol 25‐[β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranoside] ( 3 ), and (3β,16β,24S)‐24‐(acetyloxy)‐3‐(β‐D ‐glucopyranosyloxy)cycloartane‐16,25,30‐triol 25‐[β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐glucopyranoside] ( 4 ). The structure elucidations were accomplished by 1D ‐ and 2D‐NMR methods, HR‐ESI‐MS, and hydrolysis.  相似文献   

12.
Three new medicagenic acid saponins, micranthosides A–C ( 1 – 3 ), were isolated from the roots of Polygala micrantha Guill . & Perr ., along with six known presenegenin saponins. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR experiments (1H, 13C, DEPT, COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3‐Oβ‐D ‐glucopyranosylmedicagenic acid 28‐[Oβ‐D ‐galactopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl] ester ( 1 ), 3‐Oβ‐D ‐glucopyranosylmedicagenic acid 28‐[O‐6‐O‐acetyl‐β‐D ‐galactopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl] ester ( 2 ), and 3‐O‐{Oβ‐D ‐glucopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl}medicagenic acid 28‐{Oβ‐D ‐apiofuranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl} ester ( 3 ). Compounds 1 – 3 were evaluated against HCT 116 and HT‐29 human colon cancer cells, but they did not show any cytotoxicity.  相似文献   

13.
蒺藜果化学成分的分离和鉴定   总被引:3,自引:0,他引:3  
分离鉴定了2个六糖呋甾皂苷, 其中化合物1为新化合物.  相似文献   

14.
Two new spirostanol saponins, (1β,3β,5β,25S)‐spirostan‐1,3‐diol 1‐(β‐D ‐xylopyranoside) ( 1 ) and (1β,3β,5β,25S)‐spirostan‐1,3‐diol 1‐[α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranoside] ( 2 ), along with two known compounds, (1β,3β,5β,25S)‐spirostan‐1,3‐diol 1‐[α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐xylopyranoside] ( 3 ) and (1β,3β,4β,5β,25S)‐spirostan‐1,3,4,5‐tetrol 5‐(β‐D ‐glucopyranoside) ( 4 ) were isolated from the whole plant of Reineckia carnea. The structures of the new steroids were determined by detailed analysis of their 1D‐ and 2D‐NMR spectra and chemical methods, and by comparison with spectral data of known compounds. Compounds 3 and 4 were isolated from the genus Reineckia for the first time.  相似文献   

15.
A new spirostanol sapogenin and two spirostanol saponins, tentatively named reineckiagenin A (1), reineckiagenoside A (2), and reineckiagenoside B (3), were isolated from the whole plant of Reineckia carnea. By detailed analysis of their 1D and 2D NMR spectra, chemical methods, and by comparison with spectra data of known compounds, the structures of the new steroids were determined to be 25(S)-5β-spirostan-1β,3β,17α-triol (1), 25(S)-5β-spirostan-1β,3β,17α-triol 1-O-β-D-xylopyranoside (2), 25(S)-5β-spirostan-1β,3β,17α-triol 1-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (3). Compounds 1, 2, and 3 are the first naturally occurring steroids with unique structural feature of 5β-spirostan-1β,3β,17α-trihydroxyl.  相似文献   

16.
Two new iridoid glycosides, named williamsoside C (1) and williamsoside D (2) were isolated from the root barks of Sambucus williamsii Hance. Their structures were established on the basis of extensive spectroscopic analysis (1D, 2D NMR and HRESIMS) and chemical studies as α-D-glucopyranosyl (1→2)-β-D-fructofuranosyl (4→6)-β-morroniside (1) and 7β-O-ethyl morroniside-(6'-O-7')-β-morroniside (2), respectively.  相似文献   

17.
Qi W  Yuan D  Yang LM  Xie KH  Cai TZ  Yang R  Fu HZ 《Natural product research》2012,26(15):1436-1441
Two new triterpenoid saponins acylated with monoterpenic acid, 2β,23-dihydroxy-3-O-α-L-rhamnopyranosyl-21-O-{(6S)-2-trans-2,6-dimethyl-6-O-[3-O-(β-D-glucopyranosyl)-4-O-(2-methylbutanoyl)-β-L-arabinopyranosyl]-2,7-octadienoyl)-acacic acid 28-O-β-D-xylopyranosyl-(1?→?3)-β-D-xylopyranosyl-(1?→?4)-[β-D-glucopyranosyl-(1?→?3)]-α-L-rhamnopyranosyl-(1?→?2)-[α-L-rhamnopyranosyl-(1?→?6)]-β-D-glucopyranosyl ester and 2β,23-dihydroxy-3-O-α-L-rhamnopyranosyl-21-O-{(6S)-2-trans-2,6-dimethyl-6-O-[4-O-((6S)-2-trans-2,6-dimethyl-6-O-(β-L-arabinopyranosyl)-2,7-octadienoyl)]-β-L-arabinopyranosyl]-2,7-octadienoyl}-acacic acid 28-O-β-D-xylopyranosyl-(1?→?3)-β-D-xylopyranosyl-(1?→?4)-[β-D-glucopyranosyl-(1?→?3)]-α-L-rhamnopyranosyl-(1?→?2)-[α-L-rhamnopyranosyl-(1?→?6)]-β-D-glucopyranosyl ester were isolated from the fruit of Gymnocladus chinensis Baill. and the structural elucidation of both the compounds was accomplished by extensive studies of their spectroscopic (1D and 2D NMR, TOF-MS, QFT-MS) and chemical methods.  相似文献   

18.
Guided by in vitro immunological tests, three immunomodulating steroidal glycosides, stemucronatosides A ( 1 ), B ( 2 ), and C ( 3 ), were isolated from the roots of Stephanotis mucronata. On the basis of chemical evidence and extensive spectroscopic methods including 1D and 2D NMR, their structures were determined as 12‐O‐deacetylmetaplexigenin 3‐[O‐6‐deoxy‐3‐O‐methyl‐β‐D ‐allopyranosyl‐(1→4)‐Oβ‐D ‐cymaropyranosyl‐(1→4)‐β‐D ‐cymaropyranoside], 12‐O‐deacetylmetaplexigenin 3‐[Oβ‐D ‐thevetopyranosyl‐(1→4)‐Oβ‐D ‐cymaropyranosyl‐(1→4)‐β‐D ‐cymaropyranoside], and metaplexigenin 3‐[Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐6‐deoxy‐3‐O‐methyl‐β‐D ‐allopyranosyl‐(1→4)‐Oβ‐D ‐cymaropyranosyl‐(1→4)‐β‐D ‐cymaropyranoside], respectively. These compounds showed immunomodulating activities in vitro.  相似文献   

19.
Three new triterpenoid saponins, ardisicrenoside I ( 1 ), ardisicrenoside J ( 2 ), and ardisicrenoside M ( 3 ), along with eight known compounds, were isolated from the roots of Ardisia crenata Sims . Their structures were elucidated as 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 1 ), 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 2 ), 30,30‐dimethoxy‐16‐oxo‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 3 ), ardisiacrispin A ( 4 ), ardisiacrispin B ( 5 ), ardisicrenoside B ( 6 ), ardisicrenoside A ( 7 ), ardisicrenoside H ( 8 ), ardisicrenoside G ( 9 ), cyclamiretin A‐3βOβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 10 ), and cyclamiretin A‐3βOα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 11 ) by means of chemical and spectral analysis, and their cytotoxicities were evaluated in vitro.  相似文献   

20.
川麦冬中的新呋甾皂苷的分离与鉴定   总被引:1,自引:0,他引:1  
从川麦冬块根总皂苷中分离并鉴定了4个双糖链甾体皂苷化合物, 其中化合物1为新化合物, 化合物2~4是已知化合物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号