首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption isotherm of and the pH effect on the adsorption of myo-inositol hexaphosphate (myo-IP6) on amorphous aluminum hydroxide was investigated. It was found that the adsorption isotherm of myo-IP6 on aluminum hydroxide could be well fitted with the Freundlich isotherm. The amount of myo-IP6 adsorbed remained almost constant in the range of pH 4.0 to 7.0, but it decreased considerably as the initial pH was over 7. The adsorption of myo-IP6 resulted in an increase in the pH level due to the release of OH(-) ions, which suggested that the adsorption of myo-IP6 on aluminum hydroxide was caused by a ligand exchange reaction. ATR-FTIR analysis of myo-IP6 in solution and adsorbed on aluminum hydroxide at different pH were performed. The ATR-FTIR investigation indicated that myo-IP6 was adsorbed onto aluminum hydroxide by forming inner-sphere complexes and adsorption facilitated the deprotonation of phosphate groups. The asymmetric vibration of the PO bond in AlPO(-)(3) appearing at a lower frequency than that in the terminal HPO(-)(3) indicated that Al bound to the O atom not as strongly as the H atom did. The ATR-FTIR investigation and theoretical calculation (with the Gaussian 03 program) revealed that three of the six phosphate groups in myo-IP6 molecules were bound to aluminum hydroxide while the other three remained free when myo-IP6 was adsorbed on aluminum hydroxide.  相似文献   

2.
The adsorption of o-phthalic acid at the hematite/water interface was investigated experimentally using batch adsorption experiments and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy over a wide range of solution pH, surface loading, and ionic strength conditions. Molecular orbital calculations for several possible surface complexes were also performed to assign atomistic structures to the features observed in the ATR-FTIR spectra. The results of the batch adsorption experiments exhibit typical anionic characteristics with high adsorption at low pH and low adsorption at high pH. The adsorption of phthalic acid also exhibits a strong dependence on ionic strength, which suggests the presence of outer-sphere complexes. ATR-FTIR spectra provide evidence of three fully deprotonated phthalate surface complexes (an outer-sphere complex and two inner-sphere complexes) under variable chemical conditions. A fully deprotonated outer-sphere complex appears to dominate adsorption in the circumneutral pH region, while two fully deprotonated inner-sphere complexes that shift in relative importance with surface coverage increase in importance at low pH. Comparison of experimental and theoretical calculations suggests the two inner-sphere complexes are best described as a mononuclear bidentate (chelating) complex and a binuclear bidentate (bridging) complex. The mononuclear bidentate inner-sphere complex was favored at relatively low surface coverage. With increasing surface coverage, the relative contribution of the binuclear bidentate inner-sphere complex increased in importance.  相似文献   

3.
Prior infrared spectroscopic studies of extracellular polymeric substances (EPS) and live bacterial cells have indicated that organic phosphate groups mediate cell adhesion to iron oxides via inner-sphere P–OFe surface complexation. Since cell membrane phospholipids are a potential source of organic phosphate groups, we investigated the adhesion of phospholipidic vesicles to the surfaces of the iron (oxyhydr)oxides goethite (α-FeOOH) and hematite (α-Fe2O3) using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. l-α-Phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidic acid (PA) were used because they are vesicle forming phospholipids representative of prokaryotic and eukaryotic cell surface membranes. Phospholipid vesicles, formed in aqueous suspension, were characterized by transmission electron microscopy (TEM), multi-angle laser light scattering (MALS) and quasi-elastic light scattering (QELS). Their adhesion to goethite and hematite surfaces was studied with ATR-FTIR at pH 5. Results indicate that PC and PE adsorption is affected by electrostatic interaction and H-bonding (PE). Conversely, adsorption of PA involves phosphate inner-sphere complexes, for both goethite and hematite, via P–OFe bond formation. Biomolecule adsorption at the interface was observed to occur on the scale of minutes to hours. Exponential and linear increases in peak intensity were observed for goethite and hematite, respectively. Our ATR-FTIR results on the PA terminal phosphate are in good agreement with those on EPS reacted with goethite and on bacterial cell adhesion to hematite. These findings suggest that the plasma membrane, and the PA terminal phosphate in particular, may play a role in mediating the interaction between bacteria and iron oxide surfaces during initial stages of biofilm formation.  相似文献   

4.
The competitive sorption of carbonate and arsenic to hematite was investigated in closed-system batch experiments. The experimental conditions covered a pH range of 3-7, arsenate concentrations of 3-300 μM, and arsenite concentrations of 3-200 μM. Dissolved carbonate concentrations were varied by fixing the CO(2) partial pressure at 0.39 (atmospheric), 10, or 100 hPa. Sorption data were modeled with a one-site three plane model considering carbonate and arsenate surface complexes derived from ATR-FTIR spectroscopy analyses. Macroscopic sorption data revealed that in the pH range 3-7, carbonate was a weak competitor for both arsenite and arsenate. The competitive effect of carbonate increased with increasing CO(2) partial pressure and decreasing arsenic concentrations. For arsenate, sorption was reduced by carbonate only at slightly acidic to neutral pH values, whereas arsenite sorption was decreased across the entire pH range. ATR-FTIR spectra indicated the predominant formation of bidentate binuclear inner-sphere surface complexes for both sorbed arsenate and sorbed carbonate. Surface complexation modeling based on the dominant arsenate and carbonate surface complexes indicated by ATR-FTIR and assuming inner-sphere complexation of arsenite successfully described the macroscopic sorption data. Our results imply that in natural arsenic-contaminated systems where iron oxide minerals are important sorbents, dissolved carbonate may increase aqueous arsenite concentrations, but will affect dissolved arsenate concentrations only at neutral to alkaline pH and at very high CO(2) partial pressures.  相似文献   

5.
采用傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)以及基于周期平面波的密度泛函理论(DFT)分别研究了水杨酸钠在针铁矿或赤铁矿表面上的吸附结构,并将计算得到的光电子能谱移动(CLS)和电荷转移与实验得到的XPS结果进行对比。FT-IR结果表明,水杨酸钠可能以双齿双核(V)和双齿单核(IV)的形式分别吸附于针铁矿或赤铁矿表面。由DFT计算结果可知,水杨酸钠在针铁矿(101)晶面上形成双齿双核化合物(V)的吸附能为-5.46 eV。而水杨酸钠在针铁矿(101)晶面上形成双齿单核化合物(IV)的吸附能为3.80 eV,因此水杨酸钠在针铁矿上基本不以双齿单核化合物(IV)构型存在。水杨酸钠在赤铁矿(001)晶面上形成双齿单核化合物(IV)时吸附能为-4.07 eV,说明水杨酸钠在赤铁矿(001)晶面上形成了双齿单核化合物(IV)。另外,理论计算的针铁矿(101)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.68 eV)与实验观察到的Fe 2p的CLS值(-0.5 eV)吻合。理论计算的赤铁矿(001)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.80 eV)与实验观察到的Fe 2p的CLS值(-0.8 eV)吻合。因此,水杨酸钠吸附在针铁矿表面时能够通过羧酸基团上一个氧原子和酚羟基上的氧原子与针铁矿(101)表面上的两个铁原子形成双齿双核(V)结构,而在赤铁矿(001)表面上,水杨酸钠中羧酸基团上一个氧原子和酚羟基上的氧原子与赤铁矿(001)表面上的一个铁原子形成了双齿单核(IV)结构。  相似文献   

6.
Removal of phosphate by aluminum oxide hydroxide   总被引:17,自引:0,他引:17  
The development and manufacture of an adsorbent to remove phosphate ion for the prevention of eutrophication in lakes are very important. The characteristics of phosphate adsorption onto aluminum oxide hydroxide were investigated to estimate the adsorption isotherms, the rate of adsorption, and the selectivity of adsorption. Phosphate was easily adsorbed onto aluminum oxide hydroxide, because of the hydroxyl groups. The adsorption of phosphate onto aluminum oxide hydroxide was influenced by pH in solution: the amount adsorbed was greatest at pH 4, ranging with pH from 2 to 9. The optimum pH for phosphate removal by aluminum oxide hydroxide is 4. The selectivity of phosphate adsorption onto aluminum oxide hydroxide was evaluated based on the amount of phosphate ion adsorbed onto aluminum oxide hydroxide from several anion complex solutions. It is phosphate that aluminum oxide hydroxide can selectively adsorb. The selectivity of phosphate onto aluminum oxide hydroxide was about 7000 times that of chloride. This result indicated that the hydroxyl groups on aluminum oxide hydroxide have selective adsorptivity for phosphate and could be used for the removal of phosphate from seawater.  相似文献   

7.
The adsorption of oxalate on a model aluminum oxide, corundum (alpha-Al2O3), has been examined over a broad range of oxalate concentrations (0.125-25.0 mM) and pH conditions (2-10). In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) measurements indicate that at low to intermediate concentrations ([oxalate] < or = 2.50 mM), oxalate adsorbs to corundum predominantly as a bidentate, mononuclear, inner-sphere complex involving both carboxyl groups. Significant contributions from outer-spherically bound oxalate and aqueous Ox(2-) are additionally observed at higher oxalate concentrations. Consistent with the ATR-FTIR findings, macroscopic adsorption data measured for oxalate concentrations of 0.125-2.50 mM can be generally well modeled with a single bidentate, inner-sphere oxalate complex using the charge distribution multisite complexation (CD-MUSIC) model. However, at intermediate oxalate concentrations (0.50 and 1.25 mM) and pH <5, the extent of oxalate adsorption measured experimentally is found to fall significantly below that predicted by CD-MUSIC simulations. The latter finding is interpreted in terms of competition for oxalate from dissolved Al(III), the formation of which is promoted by the dissolution-enhancing properties of the adsorbed oxalate anion. In accordance with this expectation, increasing concentrations of dissolved Al(III) in solution are found to significantly decrease the extent of oxalate adsorption on corundum under acidic pH conditions, presumably through promoting the formation of Al(III)-oxalate complexes with reduced affinities for the corundum surface compared with the uncomplexed oxalate anion.  相似文献   

8.
Typically, a significant fraction of phosphorus in soils is composed of organic phosphates, and this fraction thus plays an important role in the global phosphorus cycle. Here we have studied adsorption of monomethyl phosphate (MMP) to goethite (α-FeOOH) as a model system in order to better understand the mechanisms behind adsorption of organic phosphates to soil minerals, and how adsorption affects the stability of these molecules. The adsorption reactions and stability of MMP on goethite were studied at room temperature as a function of pH, time and total concentration of MMP by means of quantitative batch experiments, potentiometry and infrared spectroscopy. MMP was found to be stable at the water-goethite interface within the pH region 3-9 and over extended periods of time, as well as in solution. The infrared spectra indicated that MMP formed three predominating pH-dependent surface complexes on goethite, and that these interacted monodentately with surface Fe. The complexes differed in hydrogen bonding interactions via the auxiliary oxygens of the phosphate group. The presented surface complexation model was based on the collective spectroscopic and macroscopic results, using the Basic Stern approach to describe the interfacial region. The model consisted of three monodentate inner sphere surface complexes where the MMP complexes were stabilized by hydrogen bonding to a neighboring surface site. The three complexes, which had equal proton content and thus could be defined as surface isomers, were distinguished by the distribution of charge over the 0-plane and β-plane. In the high pH-range, MMP acted as a hydrogen bond acceptor whereas it was a hydrogen bond donor at low pH.  相似文献   

9.
Carbonate adsorption on goethite in competition with phosphate   总被引:1,自引:0,他引:1  
Competitive interaction of carbonate and phosphate on goethite has been studied quantitatively. Both anions are omnipresent in soils, sediments, and other natural systems. The PO4-CO3 interaction has been studied in binary goethite systems containing 0-0.5 M (bi)carbonate, showing the change in the phosphate concentration as a function of pH, goethite concentration, and carbonate loading. In addition, single ion systems have been used to study carbonate adsorption as a function of pH and initial (H)CO3 concentration. The experimental data have been described with the charge distribution (CD) model. The charge distributions of the inner-sphere surface complexes of phosphate and carbonate have been calculated separately using the equilibrium geometries of the surface complexes, which have been optimized with molecular orbital calculations applying density functional theory (MO/DFT). In the CD modeling, we rely for phosphate on recent parameters from the literature. For carbonate, the surface speciation and affinity constants have been found by modeling the competitive effect of CO3 on the phosphate concentration in CO3-PO4 systems. The CO3 constants obtained can also predict the carbonate adsorption in the absence of phosphate very well. A combination of inner- and outer-sphere CO3 complexation is found. The carbonate adsorption is dominated by a bidentate inner-sphere complex, (FeO)2CO. This binuclear bidentate complex can be present in two different geometries that may have a different IR behavior. At a high PO(4) and CO3 loading and a high Na+ concentration, the inner-sphere carbonate complex interacts with a Na+ ion, probably in an outer-sphere fashion. The Na+ binding constant obtained is representative of Na-carbonate complexation in solution. Outer-sphere complex formation is found to be unimportant. The binding constant is comparable with the outer-sphere complexation constants of, e.g., SO(2-)4 and SeO(2-)4.  相似文献   

10.
The adsorption of citric acid onto goethite, kaolinite, and illite was measured as a function of pH (adsorption edges) and concentration (adsorption isotherms) at 25 degrees C. The greatest adsorption was onto goethite and the least onto illite. Adsorption onto goethite was at a maximum below pH 5 and decreased as the pH was increased to pH 9. For kaolinite, maximum adsorption occurred between pH 4.5 and pH 7, decreasing below and above this pH region, while for illite maximum adsorption occurred between about pH 5 and pH 7, decreasing at both lower and higher pH. ATR-FTIR spectra of citrate adsorbed to goethite at pH 4.6, pH 7.0, and pH 8.8 were compared with those of citrate solutions between pH 3.5 and pH 9.1. While the spectra of adsorbed citrate resembled those of the fully deprotonated solution species, there were significant differences. In particular the C[bond]O symmetric stretching band of the adsorbed species at pH 4.6 and 7.0 changed shape and was shifted to higher wave number. Further spectral analysis suggested that citrate adsorbed as an inner-sphere complex at pH 4.6 and pH 7.0 with coordination to the surface most probably via one or more carboxyl groups. At pH 8.8 the intensity of the adsorbed bands was much smaller but their shape was similar to those from the deprotonated citrate solution species, suggesting outer-sphere adsorption. Insufficient citric acid adsorbed onto illite or kaolinite to provide spectroscopic information about the mode of adsorption onto these minerals. Data from adsorption experiments, and from potentiometric titrations of suspensions of the minerals in the presence of citric acid, were fitted by extended constant-capacitance surface complexation models. On the goethite surface a monodentate inner-sphere complex dominated adsorption below pH 7.9, with a bidentate outer-sphere complex required at higher pH values. On kaolinite, citric acid adsorption was modeled with a bidentate outer-sphere complex at low pH and a monodentate outer-sphere complex at higher pH. There is evidence of dissolution of kaolinite in the presence of citric acid. For illite two bidentate outer-sphere complexes provided a good fit to all data.  相似文献   

11.
The sorption of sodium silicate by synthetic magnetite (Fe3O4) at different pH conditions (pH 7-11) and initial silicate concentrations (1 x 10(-3) and 10 x 10(-3) molL(-1)) was studied using in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The analysis of infrared spectra of sodium silicate in solution as well as adsorbed on magnetite nano-particles clearly showed the evolution of different silicate species depending on pH and silica concentration. The silicate concentration studied (10 x 10(-3) molL(-1)) contained polymeric or condensed silicate species at lower pH as well as monomers at high pH, as evident from infrared spectra. Condensation of monomers resulted in an increased intensity of absorptions in the high frequency part (>1050 cm(-1)) of the spectral region, which contains information about both silicate in solution and sorbed silicate viz. 1300 cm(-1)-850 cm(-1). In the pH range studied, infrared spectra of sorbed silicate and sorbed silicate during desorption both indicated the presence of different types of surface complexes at the magnetite surface. The sorption mechanism proposed is in accordance with a ligand exchange reaction where both monodentate and bidentate complexes could exist at low surface loading level, the relative proportion of the complexes being due to both pH and concentration in solution. Oligomerization occurred on the magnetite surface at higher surface loading.  相似文献   

12.
Airborne clay mineral particles have long atmospheric lifetimes due to their relatively small size. To assess their impact on trace atmospheric gases, we investigated heterogeneous reactions on prototype clay minerals. Diffuse reflectance infrared spectroscopy identified surface-adsorbed products formed from the uptake of gaseous nitric acid and nitrogen dioxide on kaolinite and pyrophyllite. For kaolinite, a 1:1 phyllosilicate, HNO3 molecularly adsorbed onto the octahedral aluminum hydroxide and tetrahedral silicon oxide surfaces. Also detected on the aluminum hydroxide surface were irreversibly adsorbed monodentate, bidentate, bridged, and water-coordinated nitrate species as well as surface-adsorbed water. Similar adsorbed products formed during the uptake of NO2 on kaolinite at relative humidity (RH) of 0%, and the reaction was second order with respect to reactive surface sites and 1.5 +/- 0.1 for NO2. Reactive uptake coefficients, calculated using Brunauer, Emmett, and Teller surface areas, increased from (8.0 +/- 0.2) x 10(-8) to (2.3 +/- 0.4) x 10(-7) for NO2 concentrations ranging from 0.56 x 10(13) to 8.8 x 10(13) molecules cm(-3). UV-visible spectroscopy detected gaseous HONO as a product for the reaction of NO2 on wet kaolinite. The uptake of HNO3 on pyrophyllite, a 2:1 phyllosilicate, resulted in stronger signal for nitric acid molecularly adsorbed on the silicon oxide surface compared to kaolinite. Monodentate, bridged, and water-coordinated nitrate species bound to aluminum sites also formed during this reaction indicating that reactive sites on edge facets are important for this system. The uptake of NO2 on pyrophyllite, gammaBET = (7 +/- 1) x 10(-9), was significantly lower than kaolinite because NO2 did not react with the dominant tetrahedral silicon oxide surface. These results highlight general trends regarding the reactivity of tetrahedral silicon oxide and octahedral aluminum hydroxide clay surfaces and indicate that the heterogeneous chemistry of clay aerosols varies with mineralogy and cannot be predicted by elemental analysis.  相似文献   

13.
Thermodynamic calculations and experimental studies have demonstrated that dissociation of natural phosphates in a low-temperature plasma involves partial calcium oxide evaporation. As a result, upon cooling gaseous products of the dissociated phosphate raw material, compounds containing condensed calcium phosphate are formed. The composition and properties of condensed calcium phosphates, which can be used as fertilizers, are discussed.  相似文献   

14.
《Analytical letters》2012,45(9):641-653
Abstract

An atomic absorption flow detector combined with a gel chromatographic column (Sephadex G-25) gives a sensitive and quantitative method of determining various condensed phosphates such as diphosphate, tri-phosphate, tetraphosphate and Kurrol's salt. This method is based on the automatic recording of atomic absorption at the resonance line of magnesium due to magnesium complexes of condensed phosphates which are produced during the elution of condensed phosphate anions through the column pre-equilibrated with a magnesium chloride solution.  相似文献   

15.
Formation of inner- and outer-sphere complexes of environmentally important divalent ions on the goethite surface was examined by applying the charge distribution CD model for inner- and outer-sphere complexation. The model assumes spatial charge distribution between the surface (0-plane) and the next electrostatic plane (1-plane) for innersphere complexation and between the 1-plane and the head end of the diffuse double layer (2-plane) for the outersphere complexation. The latter approach has been used because the distance of closest approach to a charged surface may differ for different ions. The surface structural approach implies the use of a Three-Plane model for the compact part (Stern layer) of solid-solution interface, which is divided into two layers. The thickness of each layer depends on the capacitance and the local dielectric constant. The new approach has been applied to describe the adsorption of magnesium, calcium, strontium, and sulfate ions. It is shown that the concept can successfully describe the development of surface charge in the presence of Ca(+2), Mg(+2), Sr(+2), and SO4(-2) as a function of loading, pH, and salt level, and also the shift in the isoelectric point (IEP) of goethite. The CD modeling revealed that, for the conditions studied, magnesium is mainly adsorbed as a bidentate innersphere complex, calcium can be a combination of bidentate innersphere and a monodentate inner- or outer-sphere complexes, and strontium is probably adsorbed as an outersphere complex. Sulfate is present as a mixture of inner- and outer-sphere monodentate complexes. Outersphere complexation is less pH dependent than innersphere complexation. The CD model predicts that the outersphere complexation of divalent cations and anions is relatively favorable at respectively low and high pH. Increase of ion loading favors the formation of innersphere complexes.  相似文献   

16.
The surface speciation of phosphate has been evaluated with surface complexation modeling using an interfacial charge distribution (CD) approach based on ion adsorption and ordering of interfacial water. In the CD model, the charge of adsorbed ions is distributed over two electrostatic potentials in the double-layer profile. The CD is related to the structure of the surface complex. A new approach is followed in which the CD values of the various surface complexes have been calculated theoretically from the geometries of the surface complexes. Molecular orbital calculations based on density functional theory (MO/DFT) have been used to optimize the structure of a series of hydrated surface complexes of phosphate. These theoretical CD values are corrected for dipole orientation effects. Data analysis of the PO4 adsorption, applying the independently derived CD coefficients, resolves the presence of two dominant surface species. A nonprotonated bidentate (B) complex is dominant over a broad range of pH values at low loading (< or =1.5 micromol/m(2)). For low pH and high loading, a strong contribution of a singly protonated monodentate (MH or MH-Na) complex is found, which differs from earlier interpretations. For the conditions studied, the doubly protonated bidentate (BH2) and monodentate (MH2) surface complexes and the nonprotonated monodentate (M) complex are not significant contributors. These findings are discussed qualitatively and quantitatively in relation to published experimental in-situ CIR-FTIR data and theoretical MO/DFT-IR information. The relative variation in the peak intensities as a function of pH and loading approximately agrees with the surface speciation calculated with the CD model. The model correctly predicts the proton co-adsorption of phosphate binding on goethite and the shift of the IEP at low phosphate loading (< or =1.5 micromol/m(2)). At higher loading, it deviates.  相似文献   

17.
Adsorption of inositol hexaphosphate (IP(6)) on goethite has been studied as a function of pH and concentration, and by use of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR). While adsorption was highest at low pH, a significant amount remained adsorbed above pH 10 where, in the absence of IP(6), the surface is expected to have a net negative charge. The adsorption isotherm at pH 5.5 indicated strong binding to the surface with each adsorbed species occupying about 2.5 nm(2). ATR-FTIR spectra of IP(6) solutions in the pH range from 2 to 12 were fitted with a single set of IR bands which were assigned primarily by analogy with phosphate spectra. From its variation in intensity with pH the band at 1040 cm(-1) was assigned to the effect of hydrogen bonding on the PO vibration. No additional bands were required to fit the spectra of IP(6) adsorbed to goethite, indicating that adsorption occurs by outer-sphere complexation in this system. At all pH values studied the band associated with hydrogen bonding was more intense for the adsorbed species than in solution at the corresponding pH indicating that hydrogen bonding plays an important role in binding IP(6) to goethite.  相似文献   

18.
The reaction between acrylonitrile and the RuH bond in HRu(CO)Cl(PPh3)3 results in the formation of a binuclear ruthenium(II) complex having chlorine bridges which are easily broken by sodio-derivatives of bidentate chelating ligands giving mononuclear hexacoordinated ruthenium(II) compounds. The RuC bond in these new complexes has been found to be stable towards nucleophilic reagents. The stereochemistry for these complexes has been suggested on the basis of IR, 1H and 31P NMR spectra.  相似文献   

19.
The removal of orthophosphates (10(-2) kg P m(-3)), condensed phosphates (10(-2) kg P m(-3)), and mixtures of both (5 x 10(-3) kg P m(-3) as orthophosphate and 5 x 10(-3) kg P m(-3) as metaphosphate) in aqueous solution is studied using alum and aluminum hydroxide. The effects of coagulant dose, pH, temperature, aging of aluminum hydroxide, and presence of different ions are investigated. On the basis of the experimental results, alum is much more efficient in phosphorus removal than aluminum hydroxide even if, in both cases, at the conditions studied, the active coagulant form is Al(OH)(3). The differences then could be due to the higher activity of the in situ formed hydroxide. Orthophosphates and metaphosphates seem to have similar behavior vs pH variation: maximum removal is achieved at pH values 5-6 in all cases. On the other hand, in the simultaneous presence of both P forms, orthophosphate and metaphosphate ions have different affinities for the surface sites of aluminum hydroxide, since for both alum and aluminum hydroxide, orthophosphates are preferentially removed compared to metaphosphates, due probably to orientation effects and the charge per P atom. The presence of sodium, potassium, magnesium, sulfate, chloride, and magnesium, at the concentrations studied and for a pH value of 6, does not influence P removal. Temperature variation, between 25 and 60 degrees C, does not affect alum efficiency but both P forms are increasingly removed with increasing temperature, probably due to polymer Al(OH)(3) breaking, producing new surfaces for adsorption. Aging decreases sorption capacity of Al(OH)(3), while crystallites of increasing size are formed. Finally adsorption of both P forms is best described by the Freundlich isotherm [[K(F)=(49.1-69.1) x 10(-3) (m(3)kg(-1))(1/N), 1/N: 0.14-0.19 for T=25-60 degrees C] and [ K(F)=(1.58-2.79) x 10(-3) (m(3)kg(-1))(1/N), 1/N: 2.17-2.47 for T=25-60 degrees C] for orthophosphate and metaphosphate, respectively.  相似文献   

20.
报道了3种不同结构的三齿N-配体以及与铑形成的顺二羰基配合物.研究表明,正方平面顺二羰基铑配合物在遇热条件下,其配体中未参与配位的授体N原子可取代它的一个端羰基而形成新的三齿配位结构.而在CO气氛下,三齿配位结构回到二齿配位状态.正方平面铑配合物的这一特殊分子内取代可逆反应过程,对于研究这类配合物结构、性能及催化作用均有重要的意义.非正方平面顺二羰基铑配合物则不发生上述分子内取代反应.利用IR和XPS对上述反应进行了表征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号