首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'?:?6',2'-terpyridine (CyMe(4)-hemi-BTBP) has been synthesized and its interactions with Am(III), U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UV absorption spectrophotometry, NMR studies and ESI-MS. Structures of 1:1 complexes with Eu(III), Ce(III) and the linear uranyl (UO(2)(2+)) ion were obtained by X-ray crystallographic analysis, and they showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III) complex is higher. (1)H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1:1 complexes with Eu(III), Ce(III) and Yb(III), while both 1:1 and 1:2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2:2 helical complexes was formed with Cu(I), with a slight preference (1.4:1) for a single directional isomer. In contrast, a 1:1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III) from Ln(III) by quadridentate N-donor ligands.  相似文献   

2.
This paper reports the synthesis, structures, and magnetic and optical properties of a series of gadolinium(III) (1a-4a) and europium(III) (1b-4b) complexes with nitronyl or imino nitroxide radicals. The crystal structures of compounds 1a and 1b consist of [Ln(III)(radical)(2)(NO(3))(3)] entities in which the gadolinium(III) (1a) or europium(III) ion (1b) is 10-coordinated to two nitronyl nitroxide radicals and three nitrato ligands. The crystal structures of compounds 2a-4a and 2b-4b consist of [Ln(III)(hfac)(3)(radical)] entities in which the gadolinium(III) (2a-4a) or europium(III) ion (2b-4b) is 8-coordinated to one nitronyl (2a and 2b) or one imino (3a, 4a and 3b, 4b) nitroxide radical and three hexafluoroacetylacetonato ligands. The gadolinium(III) complexes (1a-4a) are isostructural with their europium(III) analogues (1b-4b). The magnetic properties of the gadolinium complexes were studied. Along the series 1a-4a only compound 2a exhibits a ferromagnetic Gd(III)-radical coupling (J(Gd-rad) = +1.7 cm(-1)), while for the others this coupling is antiferromagnetic (1a: J(Gd-rad1) = -4.05 cm(-1) and J(Gd-rad2) = -0.80 cm(-1); 3a: J(Gd-rad) = -2.6 cm(-1); 4a: J(Gd-rad) = -1.9 cm(-1)). The first full luminescence spectra of lanthanide complexes with free radical ligands are reported between 650 and 1200 nm. The rich vibronic structure in luminescence and absorption spectra indicates that several excited states define the absorption spectra between 400 and 800 nm. Qualitative trends can be established between magnetic ground state properties and the energies and fine structure of the title compounds.  相似文献   

3.
The coordination chemistry of amine tris(phenolate) ligands around V(III) and V(V) is described for the first time. Three amine tris(phenolate) ligands were employed featuring different steric and electronic influence exerted by the phenolate substituents in the ortho and para positions being either t-Bu, Me, or Cl. V(III) complexes of all ligands (1-3) were readily obtained by reaction between the ligand precursors and VCl3(THF)3 in the presence of triethylamine. The complexes obtained were pentacoordinate, a THF ligand completing the coordination sphere of the metal, which was found to be of almost perfect TBP geometry, as revealed by crystallography. V(V) oxo complexes of all the ligands (4-6) were readily obtained by a reaction between the ligand precursors and VO(OPr)3. The oxo complexes of the alkyl-bearing ligands (4 and 5) could also be synthesized by the air oxidation of the corresponding V(III) complexes (1 and 2); however, the attempted air oxidation of the V(III) complex bound to the electron-poor ligand (3) did not yield the corresponding oxo complex 6. 1H NMR and crystallographic analysis of complexes 4 and 5 supported their TBP structures. Complex 6, on the other hand, was found to be composed of a TBP complex (6a) and an octahedral complex (6b) in equilibrium, the octahedral complex being more stable at lower temperatures. An X-ray structure of 6b revealed a mononuclear oxo complex, the sixth coordination site being occupied by an aqua ligand to which two THF molecules are H-bonded. Complexes 4-6 catalyze the epoxidation of olefins by t-BuOOH, albeit slowly. These complexes may thus be considered as structural and functional models of vanadium-dependent haloperoxidase enzymes.  相似文献   

4.
New hydrophobic, tetradentate nitrogen heterocyclic reagents, 6,6'-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2'-bipyridines (BTBPs) have been synthesised. These reagents form complexes with lanthanides and crystal structures with 11 different lanthanides have been determined. The majority of the structures show the lanthanide to be 10-coordinate with stoichiometry [Ln(BTBP)(NO3)3] although Yb and Lu are 9-coordinate in complexes with stoichiometry [Ln(BTBP)(NO3)2(H2O)](NO3). In these complexes the BTBP ligands are tetradentate and planar with donor nitrogens mutually cisi.e. in the cis, cis, cis conformation. Crystal structures of two free molecules, namely C2-BTBP and CyMe4-BTBP have also been determined and show different conformations described as cis, trans, cis and trans, trans, trans respectively. A NMR titration between lanthanum nitrate and C5-BTBP showed that two different complexes are to be found in solution, namely [La(C5-BTBP)2]3+ and [La(C5-BTBP)(NO3)3]. The BTBPs dissolved in octanol were able to extract Am(III) and Eu(III) from 1 M nitric acid with large separation factors.  相似文献   

5.
We synthesized Eu(III) and Sm(III) complexes with tridentate phosphine oxide ligands, Eu(hfa)(3)(TPPM) and Sm(hfa)(3)(TPPM) (hfa: hexafluoroacetylacetonato, TPPM: tris(diphenylphosphinyl)methane), and we then examined their luminescent properties. In the complexes the Eu(III) and Sm(III) centres were fully surrounded by low-vibrational frequency ligands, which led to relatively high emission quantum yields (Φ(Eu) = 30%, Φ(Sm) = 4.7%). The X-ray single crystal structures of the Eu(hfa)(3)(TPPM) revealed nona-coordinated Eu(III) complexes and C-H/O hydrogen bonding formations between the acidic hydrogen atom of the TPPM ligand and oxygen atoms of solvent molecules. The C-H/O hydrogen bonding slightly affected the coordination structure around the Eu(III) ion. Despite the seemingly small effect on the structural change, because the emission band profile of the (5)D(0)→(7)F(2) transition is sensitive to changes in the coordination environment of the Eu(III) complex, we observed a red shift in the emission spectral line.  相似文献   

6.
Reaction of PdCl2(CH3CN)2 with the sodium salt of 5‐mercapto‐1‐methyltetrazole (MetzSNa) in methanol solution affords an interesting dinuclear palladium complex [Pd2(MetzS)4 ] ( 1 ). However, treatment of PdCl2(CH3CN)2 with neutral MetzSH ligand in methanol solution produces a mononuclear palladium complex [Pd(MetzSH)4]Cl2 ( 2 ). Both complexes were characterized by IR, 1HNMR, UV‐Vis spectroscopy as well as X‐ray crystallography. Single‐crystal X‐ray diffraction analyses of two complexes lead to the elucidation of the structures and show that 1 possesses an asymmetric structure: one Pd atom is tetracoordinated by three sulfur atoms and one nitrogen atom to form PdS3N coordination sphere, the other Pd atom is tetracoordinated by three nitrogen atoms and one sulfur atom to form PdSN3 coordination sphere. The molecules of 1 are associated to 1‐D infinite linear chain by weak intermolecular Pd···S contacts in the crystal lattice. In 2 , the Pd atom lies on an inversion center and has a square‐planar coordination involving the S atoms from four MetzSH ligands. The two chloride ions are not involved in coordination, but are engaged in hydrogen bonding.  相似文献   

7.
Two equivalents of acetylacetonate (acac) have been successfully introduced into a monomeric tungsten(II) coordination sphere. With the tetracarbonyltriiodotungsten(II) anion as a precursor, the formation of a tungsten(II) bis(acac) tricarbonyl complex, W(CO)3(acac)2, 1, has been accomplished. The addition of PMe3 or PMe2Ph to tricarbonyl complex 1 formed tungsten(II)bis(acac)dicarbonylphosphine complexes 2a and 2b, respectively. Single-crystal X-ray diffraction studies of the parent tricarbonyl complex, 1, and dicarbonyl trimethylphosphine complex 2a confirmed seven-coordinate geometries for both complexes. Variable-temperature 1H and 13C{1H} NMR spectroscopy revealed fluxional behavior for these seven-coordinate molecules: rapid exchange of the three carbon monoxide ligands in 1 was observed, and movement of the phosphine ligand through a mirror plane in a C(S) intermediate species was observed for both 2a and 2b. Tricarbonyl complex 1 reacted readily with alkyne reagents to form bis(acac)monocarbonylmonoalkynetungsten(II) complexes 3a (PhC(triple bond)CH) and 3b (MeC(triple bond)CMe). Variable-temperature 1H NMR spectroscopy was used to probe rotation of the alkyne ligand in 3a and 3b. The introduction of two alkyne ligands was accomplished thermally using excess PhC(triple bond)CPh to form bis(alkyne) complex 4 which was characterized crystallographically, as well as by 1H and 13C NMR spectroscopy. The availability of W(CO)3(acac)2 as a source of the W(acac)2 d4 moiety lies at the heart of the chemistry reported here.  相似文献   

8.
Laser-induced fluorescence spectroscopy was applied to obtaining hydration structure of Eu(III) complexes with synthetic polycarboxylates of poly(acrylic acid), poly(maleic acid), poly(methacrylic acid), and poly(a-hydroxyacrylic acid). Dependence of (the number of water molecules in the first coordination sphere of Eu(III) ion) on pH and supporting electrolyte concentration was obtained for these complexes. The spectroscopic results show that Eu(III) is surrounded by the “cage” of polycarboxylate ligands. The pH-induced transition in conformation of poly(methacrylic acid) ligand was clearly observed in the plot vs. pH.  相似文献   

9.
Two new mononuclear lanthanide(III) complexes Ln(pytz)3(H2O)3·(H2O)3.5[Ln=Tb(1); Eu(2); Hpytz= 5-(2-pyridyl)tetrazole] were synthesized by reacting Hpytz with the corresponding lanthanide(III) ions and characterized. The single crystal X-ray diffraction analysis reveals that complexes 1 and 2 are isostructural and the lanthanide(III) ions in both complexes 1 and 2 are nine-coordinated, with three oxygen atoms of three coordination water molecules and six nitrogen atoms of three pytz ligands, forming a monocapped square antiprism. Extensive hydrogen bonds exist, resulting in a three-dimensional supramolecular network structure by hydrogen-bonds in both complexes 1 and 2, respectively. Complex 1 exhibits typical green fluorescence of Tb(III) ion and complex 2 red fluorescence of Eu(III) ion, in solid state at room temperature.  相似文献   

10.
A comparative study of the copper metallocenter coordination sphere is carried out for a series of N-substituted β-alaninate ligands in condensed phase. For the elucidation of the effect of regular changes in dentate properties of a ligand on the complex structure, N-(bis(hydroxymethyl)methyl)-β-alanine and its copper(II) complex are specially synthesized and the complex structure is studied by the method of X-ray structural analysis. For determination of structure of the complexes in aqueous solution is applied electron spin resonance spectroscopy. Structural characteristics of β-alaninate and glycinate complexes are compared. The factors promoting formation of polynuclear complexes are considered.  相似文献   

11.
Cyclophane-Metal Complexes: Synthesis and Crystal Structure of ([3.3]Paracyclophane)gallium(I) Tetrabromogallate(III) [3.3]Paracyclophane forms 1:1 complexes 2a and 2b with both Ga[GaCl4] and Ga[GaBr4]. The crystalline products obtained from toluene solution at room temperature are much less sensitive to air and moisture than most other arene complexes of Ga(I). Solubilities in standard organic solvents are very low, suggesting coordination polymers. The X-ray diffraction analysis of 2b confirms the presence of a two-dimensional network. Both aromatic rings of each cyclophane molecule are η6-coordinated from the outer side to Ga(I)-atoms. The position of these metal cations is 2.75 Å above the ring centres. The arene rings are parallel within each cyclophane, but tilted by 48.5° with respect to those of the neighbouring cyclophane. The coordination sphere of the Ga(I) centres is completed by two Br-atoms of two GaBr anions, which link the Ga(I) cations to give … Ga[GaBr4] Ga[GaBr4]Ga … strands. The double interconnection of the Ga(I)-atoms gives rise to a two-dimensional sheet structure, which is thus different from the structure of the previously described Ga[GaBr4] complex of [2.2]paracyclophane, where a three-dimensional network was observed.  相似文献   

12.
The complexes of trivalent actinide curium (Cm(III)) with di(chlorophenyl)dithiophosphinic acid ((ClPh)2PSSH) and three different neutral complexing agents as synergists in tert-butylbenzene are studied by EXAFS and time-resolved laser fluorescence spectroscopy (TRLFS). The results are compared with those from the corresponding europium (Eu(III)) complexes. The aim of these investigations is to understand the chemical interactions responsible for the high selectivity of the synergistic systems of (ClPh)2PSSH and neutral complexing agents tri-n-octylphosphine oxide, tributylphosphate and tris(2-ethylhexyl)phosphate for trivalent actinide cations in liquid-liquid extraction. In our structural chemistry study, we find that the inner coordination sphere of extracted Cm(III) and Eu(III) complexes are different. In all complexes the (ClPh)2PSSH is bound to the metal cation in a bidentate fashion and the oxygen donor of the neutral complexing agent used as synergist is directly coordinated to the metal cation. Comparison of the Cm(III) and Eu(III) complexes shows that Cm(III) preferentially binds to the sulfur of (ClPh)2PSSH, whereas Eu(III) is preferentially bound to oxygen. A good selectivity in liquid-liquid extraction is correlated with a high ratio of the sulfur coordination number to oxygen coordination number. This leads to the conclusion that the observed differences in the coordination structure between Cm(III) and Eu(III) complexes play an important role in the selectivity of these extraction systems.  相似文献   

13.
A library of tripodal amine ligands with two oxime donor arms and a variable coordinating or noncoordinating third arm has been synthesized, including two chiral ligands based on l-phenylalanine. Their Ni(II) complexes have been synthesized and characterized by X-ray crystallography, UV-vis absorption, circular dichroism, and FTIR spectroscopy, mass spectrometry, and room-temperature magnetic susceptibility. At least one crystal structure is reported for all but one Ni/ligand combination. All show a six-coordinate pseudo-octahedral coordination geometry around the nickel center, with the bis(oxime)amine unit coordinating in a facial mode. Three distinct structure types are observed: (1) for tetradentate ligands, six-coordinate monomers are formed, with anions and/or solvent filling out the coordination sphere; (2) for tridentate ligands, six-coordinate monomers are formed with Ni(II)(NO(3))(2), with one monodentate and one bidentate nitrate filling the remaining coordination positions; (3) for tridentate ligands, six-coordinate, bis(mu-Cl) dimers are formed with Ni(II)Cl(2), with one terminal and two bridging chlorides filling the coordination sphere. The UV-vis absorption spectra of the complexes show that the value of 10 Dq varies according to the nature of the third arm of the ligand. The trend based on the third arm follows the order alkyl/aryl < amide < carboxylate < alcohol < pyridyl < oxime.  相似文献   

14.
We report new bis-cyclometalated cationic iridium(III) complexes [(C(^)N)(2)Ir(CN-tert-Bu)(2)](CF(3)SO(3)) that have tert-butyl isocyanides as neutral auxiliary ligands and 2-phenylpyridine or 2-(4'-fluorophenyl)-R-pyridines (where R is 4-methoxy, 4-tert-butyl, or5-trifluoromethyl) as C(^)N ligands. The complexes are white or pale yellow solids that show irreversible reduction and oxidation processes and have a large electrochemical gap of 3.58-3.83 V. They emit blue or blue-green phosphorescence in liquid/solid solutions from a cyclometalating-ligand-centered excited state. Their emission spectra show vibronic structure with the highest-energy luminescence peak at 440-459 nm. The corresponding quantum yields and observed excited-state lifetimes are up to 76% and 46 μs, respectively, and the calculated radiative lifetimes are in the range of 46-82 μs. In solution, the photophysical properties of the complexes are solvent-independent, and their emission color is tuned by variation of the substituents in the cyclometalating ligand. For most of the complexes, an emission color red shift occurs in going from solution to neat solids. However, the shift is minimal for the complexes with bulky tert-butyl or trifluoromethyl groups on the cyclometalating ligands that prevent aggregation. We report the first example of an iridium(III) isocyanide complex that emits blue phosphorescence not only in solution but also as a neat solid.  相似文献   

15.
The sparkle/AM1 model, recently defined for Eu(III), Gd(III) and Tb(III), is now extended to Ho(III). A set of 15 complexes with various representative ligands was chosen by cluster analysis from the set formed by the 27 Ho(III) complexes structures of high crystallographic quality (R factor < 0.05 Å) available in the Cambridge Structural Database and which possess oxygen or nitrogen as coordinating atoms. In the validation procedure, we included the remaining 12 Ho(III) complexes. For these 27 complexes, the Sparkle/AM1 unsigned mean error for all interatomic distances between the Ho(III) ion and the ligand atoms of the first sphere of coordination is 0.05 Å. Sparkle/AM1 constitutes the only semiempirical model for the quantum chemical calculation of Ho(III) coordination compounds available, with geometry prediction accuracies comparable to present day rare earth complex ab initio/ECP calculations, while being hundreds of times faster.  相似文献   

16.
One-step joint synthesis of two iridium porphyrin complexes, a donor-acceptor SAT (sitting a top) complex μ-(5,10,15,20-tetraphenylporphine)-bis-chloroiridium(I) and the covalent complex (5,10,15,20-tetraphenylporphinato)chloroiridium(III) by the reaction of free porphyrin and chloroiridic acid (H3O)2IrCl6 in boiling phenol was studied. The structure of complexes was confirmed by spectroscopy (UV/Vis, IR, 1H NMR) and TLC. The iridium(III) SAT complex with the hydride ligand in the first coordination sphere, (acetato)hydrido(5,10,15,20-tetraphenylporphine)iridium(III), was obtained by oxidative addition reaction, which is quite rare for porphyrin complexes. The thermodynamic stability of the complexes to oxidants (aerated acids) was studied by spectrophotometric titration.  相似文献   

17.
In the present study, photophysical properties of fluorescent poly(oxyethylene phosphate) tris(β-diketonate) europium (III) complexes have been studied by means of stationary and time-resolved fluorescence spectroscopy (in ethanol at room temperature). The luminescent quantum yields and efficiency for the energy transfer from β-diketonate ligands to Eu(III) ion have been determined for the studied complexes by using diffusion-enhanced fluorescence resonance energy transfer. Obtained results show effect of the polymer ligands upon photophysical properties of the complexes and a relation has been established with length of the oxyethylene spacer between two phosphonate groups. The Förster radiuses of the synthesized compounds with SulfoRhodamine 101 as acceptor have been calculated. Measured distances between molecules of the donors and acceptor at identical acceptor/donor molar ratios have been illustrated the difference in structure of the ternary and polymer complexes in solution even at low concentration.  相似文献   

18.
《印度化学会志》2021,98(6):100080
Two octahedral complexes [NiL(HL)]ClO4.0.5CH3OH and [CoL2]ClO4 have been synthesized with N2O donor Schiff base ligand {((2-(phenylamino)ethyl)imino)methyl}phenol (HL) and characterized by spectroscopic techniques and single crystal X-ray diffraction studies. The molar conductivities data of the two complexes show that the complexes are 1:1 electrolyte. Single crystal X-ray diffraction data shows both Ni(II) and Co(III) complexes have distorted octahedral geometry and two ligands are coordinated to the metal centers and one ClO4 ion outside the coordination sphere. The intermolecular interactions in the complexes are evaluated by Hirshfeld surface analysis and revealed a significant contribution of non- or weakly polar interactions to the packing forces for both molecules, with crystal structure of Co(III) complex featuring short H/H contacts.  相似文献   

19.
UV-visible and Raman spectroscopies as well as electrochemical techniques have been used to characterize cis- and trans-[Co(III)(en)2Cl2]Cl (en=ethylenediamine) complexes and the gamma-alumina-supported cis-Co((III)) complex. It is shown that the electrochemical reduction of these complexes occurs according to a multistage mechanism involving two electrochemical steps, with the formation of a dimer that was characterized by UV-visible spectroscopy (intervalence band at 670 nm). The apparent standard redox potential for each step has been determined, and experimental results reveal that cis and trans complexes present similar electrochemical characteristics. It is also shown that the deposition of trans-[Co(III)(en)2Cl2]+ on gamma-alumina leads to an inner-sphere complex (ISC) in a cis configuration in which Cl- ligands are substituted by OH or O- surface groups of alumina. These changes in the coordination sphere of the complex induce a substantial decrease of its apparent redox potential since it is -0.63 V/SCE (saturated calomel electrode) for the gamma-alumina-supported cis-Co(III) complex, whereas values of -0.17 and -0.35 V/SCE were determined in dimethyl sulfoxide (DMSO) for the trans and cis precursor complexes, respectively.  相似文献   

20.
In this contribution, we provide a comprehensive understanding of the speciation of the Eu(III) complex of the lacunary Wells-Dawson isomer, α1-[P(2)W(17)O(61)](10-) in organic media. The Wells-Dawson polyoxometalate, α1-[P(2)W(17)O(61)](10-) (abbreviated as α1) forms well-defined complexes with europium(III) (and other lanthanide(III)) ions in aqueous solution of predominantly 1 : 1 stoichiometries. The 8-coordinate Eu(III) ion is bound to 4 basic terminal oxygens (O(α1)) and four water molecules (O(H(2)O)) that complete the coordination sphere. Tetra-n-butylammonium (TBA) cations are employed to render the [(H(2)O)(4)Eu(α1-P(2)W(17)O(61))](7-) (Eu-α1) complex soluble in acetonitrile. Europium(III) provides the unique opportunity to employ luminescence spectroscopy and multinuclear NMR to probe the coordination environment. We interrogate the innermost coordination sphere of the Eu(III) ion in acetonitrile solution and in MeCN/H(2)O mixtures. We provide evidence toward the fractional displacement and coordination of acetonitrile within the TBA salts, that is consistent with recent EXAFS data. (31)P NMR and Stern-Volmer quenching studies suggest that dimerization to the 2 : 2 species is negligible in acetonitrile and MeCN-H(2)O mixtures. The decreasing transition energy in the excitation spectroscopy of the TBA-Eu-α1 analog upon dilution is consistent with a nephelauxetic effect, which is attributed to a slight increase in covalency upon replacement of water with acetonitrile. Determination of the number of bound waters (q) is also consistent with acetonitrile-water exchange. The reactivity of the 1 : 1 TBA-Eu-α1 with heterocyclic aromatic amines (1,10-phenanthroline, phen, and 2,2' bipyridine, bipy) in MeCN was probed by titrations monitoring the Eu(III) emission upon sensitization by the "antenna ligands". Binding constants for the products 1 : 1 TBA(x-y)H(y)[(Phen)(H(2)O)(2)Eu(α1-P(2)W(17)O(61))] and 1 : 2 TBA(x-y)H(y)[(Phen)(2)Eu(α1-P(2)W(17)O(61))] (denoted 1 : 1 TBA-Eu-α1:phen and 1 : 2 TBA-Eu-α1:phen, respectively), were determined: logK(1): 7.05 ± 0.04 and logK(2): 4.63 ± 0.10. These are reasonably strong formation constants for Ln phenanthroline complexes. In comparison the bipyridine complexes are much weaker. Excitation spectroscopy reveals that the coordination environment about the Eu(III) center is consistent with the ternary 1 : 1 TBA-Ln-α1:phen or 1 : 2 TBA-Ln-α1:phen complexes. Multinuclear NMR spectroscopy shows significant chemical shift changes at 1 : 1 and 1 : 2 stoichiometries and the chemical shift of bound water tracks with the titration to validate expulsion of the H(2)O upon coordination of phenanthroline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号