首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A present trend in the study of theSymmetric Traveling Salesman Polytope (STSP(n)) is to use, as a relaxation of the polytope, thegraphical relaxation (GTSP(n)) rather than the traditionalmonotone relaxation which seems to have attained its limits. In this paper, we show the very close relationship between STSP(n) and GTSP(n). In particular, we prove that every non-trivial facet of STSP(n) is the intersection ofn + 1 facets of GTSP(n),n of which are defined by the degree inequalities. This fact permits us to define a standard form for the facet-defining inequalities for STSP(n), that we calltight triangular, and to devise a proof technique that can be used to show that many known facet-defining inequalities for GTSP(n) define also facets of STSP(n). In addition, we give conditions that permit to obtain facet-defining inequalities by composition of facet-defining inequalities for STSP(n) and general lifting theorems to derive facet-defining inequalities for STSP(n +k) from inequalities defining facets of STSP(n).Partially financed by P.R.C. Mathématique et Informatique.  相似文献   

2.
3.
《Optimization》2012,61(5):691-704
In 1972 Christofides introduced a lower bound for the Traveling Salesman Problem (TSP). The bound is based on solving repeatedly a Linear Assignment Problem. We relate the bound to the Complete Cycle Problem; as a consequence the correctness of the bound is easier to prove.

Further we give improvements for the bound in the symmetric case and we deal with the influence of the triangle equation together with the identification of non-optimal edges for the TSP. The improvements are illustrated by examples and computational results for large problems.  相似文献   

4.
In the Attractive Traveling Salesman Problem the vertex set is partitioned into facility vertices and customer vertices. A maximum profit tour must be constructed on a subset of the facility vertices. Profit is computed through an attraction function: every visited facility vertex attracts a portion of the profit from the customer vertices based on the distance between the facility and customer vertices, and the attractiveness of the facility vertex. A gravity model is used for computing the profit attraction. The problem is formulated as an integer non-linear program. A linearization is proposed and strengthened through the introduction of valid inequalities, and a branch-and-cut algorithm is developed. A tabu search algorithm is also implemented. Computational results are reported.  相似文献   

5.
In this paper we study the polyhedron associated with the General Routing Problem (GRP). This problem, first introduced by Orloff in 1974, is a generalization of both the Rural Postman Problem (RPP) and the Graphical Traveling Salesman Problem (GTSP) and, thus, is NP -hard. We describe a formulation of the problem such that from every non-trivial facet-inducing inequality for the RPP and GTSP polyhedra, we obtain facet-inducing inequalities for the GRP polyhedron. We describe a new family of facet-inducing inequalities for the GRP, the honeycomb constraints, which seem to be very useful for solving GRP and RPP instances. Finally, new classes of facets obtained by composition of facet-inducing inequalities are presented.  相似文献   

6.
The Prize Collecting Traveling Salesman Problem is a generalization of the Traveling Salesman Problem. A salesman collects a prize for each visited city and pays a penalty for each non visited city. The objective is to minimize the sum of the travel costs and penalties, but collecting a minimum pre-established amount of prizes. This problem is here addressed by a simple, but efficient tabu search approach which had improved several upper bounds of the considered instances.  相似文献   

7.
In this paper a one-machine scheduling model is analyzed wheren different jobs are classified intoK groups depending on which additional resource they require. The change-over time from one job to another consists of the removal time or of the set-up time of the two jobs. It is sequence-dependent in the sense that the change-over time is determined by whether or not the two jobs belong to the same group. The objective is to minimize the makespan. This problem can be modeled as an asymmetric Traveling Salesman Problem (TSP) with a specially structured distance matrix. For this problem we give a polynomial time solution algorithm that runs in O(n logn) time. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

8.
9.
In this paper, a variant of the Traveling Salesman Problem with Time Windows is considered, which consists in minimizing the sum of travel durations between a depot and several customer locations. Two mixed integer linear programming formulations are presented for this problem: a classical arc flow model and a sequential assignment model. Several polyhedral results are provided for the second formulation, in the special case arising when there is a closed time window only at the depot, while open time windows are considered at all other locations. Exact and heuristic algorithms are also proposed for the problem. Computational results show that medium size instances can be solved exactly with both models, while the heuristic provides good quality solutions for medium to large size instances.  相似文献   

10.
The Steiner Traveling Salesman Problem (STSP) is a variant of the TSP that is particularly suitable when routing on real-life road networks. The standard integer programming formulations of both the TSP and STSP have an exponential number of constraints. On the other hand, several compact formulations of the TSP, i.e., formulations of polynomial size, are known. In this paper, we adapt some of them to the STSP, and compare them both theoretically and computationally. It turns out that, just by putting the best of the formulations into the CPLEX branch-and-bound solver, one can solve instances with over 200 nodes. We also briefly discuss the adaptation of our formulations to some related problems.  相似文献   

11.
The General Routing Problem (GRP) consists of finding a minimum length closed walk in an edge-weighted undirected graph, subject to containing certain sets of required nodes and edges. It is related to the Rural Postman Problem and the Graphical Traveling Salesman Problem.We examine the 0/1-polytope associated with the GRP introduced by Ghiani and Laporte [A branch-and-cut algorithm for the Undirected Rural Postman Problem, Math. Program. Ser. A 87 (3) (2000) 467-481]. We show that whenever it is not full-dimensional, the set of equations and facets can be characterized, and the polytope is isomorphic to the full-dimensional polytope associated with another GRP instance which can be obtained in polynomial time. We also offer a node-lifting method. Both results are applied to prove the facet-defining property of some classes of valid inequalities. As a tool, we study more general polyhedra associated to the GRP.  相似文献   

12.
The Traveling Salesman Problem with Pickup and Delivery (TSPPD) is defined on a graph containing pickup and delivery vertices between which there exists a one-to-one relationship. The problem consists of determining a minimum cost tour such that each pickup vertex is visited before its corresponding delivery vertex. In this paper, the TSPPD is modeled as an integer linear program and its polyhedral structure is analyzed. In particular, the dimension of the TSPPD polytope is determined and several valid inequalities, some of which are facet defining, are introduced. Separation procedures and a branch-and-cut algorithm are developed. Computational results show that the algorithm is capable of solving to optimality instances involving up to 35 pickup and delivery requests, thus more than doubling the previous record of 15.   相似文献   

13.
Group theory can be used to model and synthesize the neighborhood of Traveling Salesman tours reachable through k-OPT exchanges. A primary concept is that a dihedral group action partitions the sets of cut arcs so that k-OPT exchanges of orbital elements are conjugate. Also presented is a method to produce all k-OPT exchanges for a given set of cut arcs.  相似文献   

14.
De Klerk et al., (2008) give a semidefinite programming constraint for the Traveling Salesman Problem (TSP) based on the matrix-tree theorem. This constraint says that the aggregate weight of all spanning trees in a solution to a TSP relaxation is at least that of a cycle graph. In this note, we show that the semidefinite constraint holds for any weighted 2-edge-connected graph and, in particular, is implied by the subtour elimination constraints.  相似文献   

15.
Given a graphG = (N, E) and a length functionl: E , the Graphical Traveling Salesman Problem is that of finding a minimum length cycle goingat least once through each node ofG. This formulation has advantages over the traditional formulation where each node must be visited exactly once. We give some facet inducing inequalities of the convex hull of the solutions to that problem. In particular, the so-called comb inequalities of Grötschel and Padberg are generalized. Some related integer polyhedra are also investigated. Finally, an efficient algorithm is given whenG is a series-parallel graph.Work was supported in part by NSF grant ECS-8205425.  相似文献   

16.
The Precedence Constrained Generalized Traveling Salesman Problem (PCGTSP) combines the Generalized Traveling Salesman Problem (GTSP) and the Sequential Ordering Problem (SOP). We present a novel branching technique for the GTSP which enables the extension of a powerful pruning technique. This is combined with some modifications of known bounding methods for related problems. The algorithm manages to solve problem instances with 12–26 groups within a minute, and instances with around 50 groups which are denser with precedence constraints within 24 h.  相似文献   

17.
The graphical relaxation of the Traveling Salesman Problem is the relaxation obtained by requiring that the salesman visit each city at least once instead of exactly once. This relaxation has already led to a better understanding of the Traveling Salesman polytope in Cornuéjols, Fonlupt and Naddef (1985). We show here how one can compose facet-inducing inequalities for the graphical traveling salesman polyhedron, and obtain other facet-inducing inequalities. This leads to new valid inequalities for the Symmetric Traveling Salesman polytope. This paper is the first of a series of three papers on the Symmetric Traveling Salesman polytope, the next one studies the strong relationship between that polytope and its graphical relaxation, and the last one applies all the theoretical developments of the two first papers to prove some new facet-inducing results.This work was initiated while the authors were visiting the Department of Statistics and Operations Research of New York University, and continued during several visits of the first author at IASI.  相似文献   

18.
A. Felipe  M. T. Ortuño  G. Tirado 《TOP》2009,17(1):190-213
The changing requirements in transportation and logistics have recently induced the appearance of new vehicle routing problems that include complex constraints as precedence or loading constraints. One of these problems that have appeared during the last few years is the Double Traveling Salesman Problem with Multiple Stacks (DTSPMS), a vehicle routing problem in which some pickups and deliveries must be performed in two independent networks, verifying some precedence and loading constraints imposed on the vehicle. In this paper, four new neighborhood structures for the DTSPMS based on reinsertion and permutation of orders to modify both the routes and the loading planning of the solutions are introduced and described in detail. They can be used in combination with any metaheuristic using local search as a subprocedure, guiding the search to unexplored zones of the solution space. Some computational results obtained using all proposed neighborhood structures are presented, providing good quality solutions for real sized instances.   相似文献   

19.
In the m-Capacitated Peripatetic Salesman Problem (m-CPSP) the aim is to determine m Hamiltonian cycles of minimal total cost on a graph, such that all the edges are traversed less than the value of their capacity. This article introduces three formulations for the m-CPSP. Two branch-and-cut algorithms and one branch-and-price algorithm are developed. Tests performed on randomly generated and on TSPLIB Euclidean instances indicate that the branch-and-price algorithm can solve instances with more than twice the size of what is achievable with the branch-and-cut algorithms.  相似文献   

20.
Given a graph and a length function defined on its edge-set, the Traveling Salesman Problem can be described as the problem of finding a family of edges (an edge may be chosen several times) which forms a spanning Eulerian subgraph of minimum length. In this paper we characterize those graphs for which the convex hull of all solutions is given by the nonnegativity constraints and the classical cut constraints. This characterization is given in terms of excluded minors. A constructive characterization is also given which uses a small number of basic graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号