首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. H. Ju 《Nonlinear dynamics》2012,69(1-2):173-183
This paper investigates the derailment of high-speed trains moving on multispan simply supported bridges. A?moving wheel finite element containing contact and separation modes was developed to simulate vehicle?Cbridge interaction problems under seismic loads. Rail irregularities and bridge?Crail?Ctrain interactions were appropriately considered in the nonlinear finite element analysis, which indicates that the derailment coefficients are enlarged with the increase of train speeds for high-speed trains moving on multispan simply supported bridges. The accelerations of elevated bridge girders may be significantly magnified during the seismic load; moreover, gaps between simply supported girders during seismic loads will produce large derailment coefficients.  相似文献   

2.
This paper investigates the derailment of trains moving on multi-span simply supported bridges with foundation settlements or rotations. Rail irregularities, train–track–bridge interactions, and wheel/rail separations were considered in the three-dimensional nonlinear finite element analysis. A moving spring-mass with separation and contact modes was used to validate the proposed finite element model. In the parametric study, finite element results indicate that foundation settlements or rotations cause sharp displacements between two simply supported girders, which generate large train derailment coefficients. The train derailment coefficients rise with increased train speed, and they greatly increase at a critical speed. The time history displacements of a train obviously contain a jump when it passes a location with foundation settlements or rotations, so a warning system can be established using this measurement.  相似文献   

3.
Meccanica - The scope of this paper is to evaluate the performance and computational efficiency of various stochastic simulation methods for a stochastic based reliability assessment of railway...  相似文献   

4.
Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with a multi-body dynamics method.The variations of degrees of freedom(DOFs:horizontal movement,roll angle,and yaw angle),the lateral wheel-rail force,the derailment coefficient and the rate of wheel load reduction with time when two carriages meet in open air are obtained and compared with the results of a single train travelling at specifie speeds.Results show that the rate of wheel load reduction increases with the increase of train speed and meets some safety standard at a certain speed,but exceeding the value of the rate of wheel load reduction does not necessarily mean derailment.The evaluation standard of the rate of wheel load reduction is somewhat conservative and may be loosened.The pressure pulse has significan effects on the train DOFs,and the evaluations of these safety indexes are strongly suggested in practice.The pressure pulse has a limited effect on the derailment coefficien and the lateral wheel-rail force,and,thus,their further evaluations may be not necessary.  相似文献   

5.
Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.  相似文献   

6.
7.
建立了高速列车头车的有限元模型,运用有限元软件LS-DYNA模拟了头车碰撞刚性墙的冲击过程。在碰撞发生时,原有设计方案的牵引梁主体的变形以整体屈曲为主,不利于缓冲吸能。在对原设计的耐撞性分析的基础上,建议对原有牵引梁结构加以改进,并在前端增加两组不同尺寸和厚度的带圆角的方管作为缓冲吸能管,考虑了在缓冲管中填充泡沫铝与否,形成了4种设计方案。数值模拟结果表明,与原设计方案相比,新方案的整个头车的吸能量有大幅度提高,刚性墙反力的峰值也有一定程度的降低,采用大的圆角半径的厚管并填充泡沫铝的方案的改进效果最明显。  相似文献   

8.
Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of un- steady Reynold-averaged Navier-Stokes (URANS) and de- tached eddy simulation (DES) are utilized, respectively. Re- suits reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.  相似文献   

9.
10.
11.
ABSTRACT

The side-wind loading on a simplified train model at scale 1:25 is investigated by parallel large eddy simulation (LES) with incompressible solvers from the OpenFOAM package and a novel dynamically adaptive, parallel LES-type lattice Boltzmann method (LBM) implemented in our own AMROC framework. It is found that the new LBM code provides more accurate time-averaged force predictions, while compute times are reduced.  相似文献   

12.
This paper describes the experimental setup, procedure, and results obtained, concerning the dynamics of a body lying on a floor, attached to a hinge, and exposed to an unsteady flow, which is a model of the initiation of rotational motion of ballast stones due to the wind generated by the passing of a high-speed train. The idea is to obtain experimental data to support the theoretical model developed in Sanz-Andres and Navarro-Medina (J Wind Eng Ind Aerodyn 98, 772–783, (2010), aimed at analyzing the initial phase of the ballast train-induced-wind erosion (BATIWE) phenomenon. The experimental setup is based on an open circuit, closed test section, low-speed wind tunnel, with a new sinusoidal gust generator mechanism concept, designed and built at the IDR/UPM. The tunnel’s main characteristic is the ability to generate a flow with a uniform velocity profile and sinusoidal time fluctuation of the speed. Experimental results and theoretical model predictions are in good agreement.  相似文献   

13.
Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.  相似文献   

14.
The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the derailment.The root causes of the dynamic derailment of highspeed trains operating in severe environments are not easy to identify using the field tests or laboratory experiments.Numerical simulation using an advanced train–track interaction model is a highly efficient and low-cost approach to investigate the dynamic derailment behavior and mechanism of high-speed trains.This paper presents a three-dimensional dynamic model of a high-speed train coupled with a ballast track for dynamic derailment analysis.The model considers a train composed of multiple vehicles and the nonlinear inter-vehicle connections.The ballast track model consists of rails,fastenings,sleepers,ballasts,and roadbed,which are modeled by Euler beams,nonlinear spring-damper elements,equivalent ballast bodies,and continuous viscoelastic elements,in which the modal superposition method was used to reduce the order of the partial differential equations of Euler beams.The commonly used derailment safety assessment criteria around the world are embedded in the simulation model.The train–track model was then used to investigate the dynamic derailment responses of a high-speed train passing over a buckled track,in which the derailmentmechanism and train running posture during the dynamic derailment process were analyzed in detail.The effects of train and track modelling on dynamic derailment analysis were also discussed.The numerical results indicate that the train and track modelling options have a significant effect on the dynamic derailment analysis.The inter-vehicle impacts and the track flexibility and nonlinearity should be considered in the dynamic derailment simulations.  相似文献   

15.
The characteristic wind curve (CWC) was com- monly used in the previous work to evaluate the operational safety of the high-speed trains exposed to crosswinds. How- ever, the CWC only provide the dividing line between safety state and failure state of high-speed trains, which can not evaluate the risk of derailment of high-speed trains when ex- posed to natural winds. In the present paper, a more realistic approach taking into account the stochastic characteristics of natural winds is proposed, which can give a reasonable and effective assessment of the operational safety of high-speed trains under stochastic winds. In this approach, the longitudi- nal and lateral components of stochastic winds are simulated based on the Cooper theory and harmonic superposition. An algorithm is set up for calculating the unsteady aerody- namic forces (moments) of the high-speed trains exposed to stochastic winds. A multi-body dynamic model of the rail vehicle is established to compute the vehicle system dynamic response subjected to the unsteady aerodynamic forces (mo- ments) input. Then the statistical method is used to get the mean characteristic wind curve (MCWC) and spread range of the high-speed trains exposed to stochastic winds. It is found that the CWC provided by the previous analyticalmethod produces over-conservative limits. The methodol- ogy proposed in the present paper can provide more signif- icant reference for the safety operation of high-speed trains exposed to stochastic winds.  相似文献   

16.
基于Cooper理论和谐波叠加法计算随车移动点的脉动风速,分析不同风向角下脉动风速的功率谱密度特性.在横风下高速列车非定常气动载荷计算方法的基础上,建立了侧风下高速列车非定常气动载荷的计算方法,并用此方法分析了侧向随机风作用下非定常气动载荷的统计特性,给出了各气动载荷的峰值因子.研究表明,当风向角接近90°时,无量纲功率谱会往高频移动,风向角对脉动风速的影响较小;在各个风向角下,气动载荷的标准差与平均值的比值仅依赖于侧偏角,侧力与侧滚力矩的峰值因子相同,摇头力矩与点头力矩的峰值因子相同.  相似文献   

17.
This paper deals with the applicability of passive tuned mass dampers (PTMDs) to suppress train-induced vibration on bridges. A railway bridge is modeled as an Euler–Bernouli beam and a train is simulated as series of moving forces, moving masses or moving suspension masses to investigate the influence of various vehicle models on the bridge features with or without PTMD. According to the train load frequency analysis, the resonant effects will occur as the modal frequencies of the bridges are close to the multiple of the impact frequency of the train load to the bridge. A single PTMD system is then designed to alter the bridge dynamic characteristics to avoid excessive vibrations. Numerical results from simply supported bridges of Taiwan High-Speed Railway (THSR) under German I.C.E., Japanese S.K.S. and French T.G.V. trains show that the proposed PTMD is a useful vibration control device in reducing bridge vertical displacements, absolute accelerations, end rotations and train accelerations during resonant speeds, as the train axle arrangement is regular. It is also found that the inner space of bridge box girder of THSR is wide and deep enough for the installation and movement of PTMD.  相似文献   

18.
19.
This paper presents a dynamic analytical model for tank train vibrations. The train is considered as a system of 27 degrees of freedom consisting of lateral, roll, yaw, vertical, and pitch motions for the vehicle body and its two bogies and lateral, roll and vertical motions for the four wheel-sets. Liquid sloshing in the tank is modeled using an equivalent mechanical mass-spring model. Coupling between the vehicle system and the railway track is realized through the interaction forces between the train and the rail, where the vertical and lateral irregularity profiles of the track are regarded as stationary ergodic Gaussian random processes and simulated by polynomial functions. Random vibration theory is used to obtain the response power spectral densities. Finally, numerical results for a typical test case including natural frequencies of a coupled system, frequency response functions, and output power spectral densities are presented.  相似文献   

20.
In this paper we develop a mathematical model for the analysis of the dynamic response of a bridge structure as it interacts with moving vehicles. The vehicles are modeled both for fixed axle distances (e.g. Cooper Loadings) and for variable axle distances (e.g. multi-vehicles). We then generate an algorithm to solve the resulting equations of motion. Results obtained using our theoretical model are shown to compare very well with measured field data.Associate Professor of Mech. Eng.Professor of Mech. Eng.Associate Professor of Civil Eng.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号