首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper reports on the results of investigations of the influence of irradiation of the two-band BCS superconductor MgB2 by electrons with an average energy $ \bar {\rm E} $ \bar {\rm E} ∼ 10 MeV at high doses (0 ≤ ϕt ≤ ∼2.5 × 1018 cm−2) on the temperature and width of the transition to the superconducting state, the temperature dependence of the electrical resistivity in the normal state, the crystal lattice parameters, and the diffraction line intensity. An increase in the electron irradiation dose ϕt leads to the following effects: a decrease in the critical temperature T c ; an increase in the width of the superconducting transition ΔT c ; and a decrease in the “residual electrical resistivity” ρ273 K40 K, in the parameters a and c of the hexagonal crystal lattice, and in the ratio between the diffraction line intensities I 110/I 100. From analyzing the results obtained, it has been established that the main type of radiation damages under irradiation of the BCS superconductor MgB2 by high-energy electrons is the formation of vacancies in the B sublattice, which leads to a narrowing of the large band gap Δσ on the Fermi surface.  相似文献   

2.
Band structure of a novel superconductor—magnesium diboride—is studied by the self-consistent FP-LMTO method. Density of states near the Fermi level of MgB2 and its electronic properties are governed by the metal-like boron 2p orbitals in the planar network of boron atoms. The modification of the band structure of MgB2 upon doping the boron (with Be, C, N, and O substitutional impurities) and the magnesium (with Be, Ca, Li, and Na substitutional impurities) sublattices or upon the introduction of structural vacancies (boron nonstoichiomety) is analyzed. The electronic structures of MgB2 and hypothetical CaB2 are also studied as functions of pressure.  相似文献   

3.
We report on measurements of the temperature dependence of resistivity, ρ(T), for single-crystal samples of ZrB12, ZrB2, and polycrystalline samples of MgB2. It is shown that the cluster compound ZrB12 behaves as a simple metal in the normal state, with a typical Bloch-Grüneisen ρ(T) dependence. However, the resistive Debye temperature, TR=300 K, is three times smaller than TD obtained from specific heat data. We observe the T2 term in ρ(T) of all these borides, which could be interpreted as an indication of strong electron-electron interaction.  相似文献   

4.
We report on syntheses and electron transport properties of polycrystalline samples of diborides (AB2) with different transition metals atoms (A=Zr, Nb, Ta). The temperature dependence of resistivity, ρ(T), and ac susceptibility of these samples reveal a superconducting transition of ZrB2 with T c =5.5 K, while NbB2 and TaB2 have been observed to be nonsuperconducting up to 0.37K. H c2(T) is linear in temperature below T c , leading to a rather low H c2(0)=0.1 T. At T close to T c , H c2(T) demonstrates a downward curvature. We conclude that these diborides, as well as MgB2 samples, behave like simple metals in the normal state with usual Bloch-Grüneisen temperature dependence of resistivity and with Debye temperatures 280, 460, and 440 K for ZrB2, NbB2, and MgB2, respectively, rather than T 2 and T 3, as previously reported for MgB2.  相似文献   

5.
Water clusters (H2O)6 are simulated by the Monte Carlo method with the Metropolis function at various temperatures (T 1 = 273 K, T 2 = 298 K, and T′1= 373 K) and densities (ρ1 = 0.9998 g/cm3, ρ2 = 0.9167 g/cm3, and ρ3 = 0.00059 g/cm3) of the system. It is established that the number of retained most probable configuration types at ρ1 = 0.9998 g/cm3 during temperature transitions from T 1 = 273 K to T 2 = 298 K and from T1 = 373 K to T 2 = 298 K is smaller than at ρ3 = 0.00059 g/cm3. This result was acquired on the background of the following invariable parameters of the system with the same temperature transitions for each of three values of density: (i) the average number of retained most probable configuration types, (ii) the average fraction of weight coefficients of the most probable configuration types, and (iii) the average potential energy. The configuration type that was retained among the most probable configuration types of the system for all values of density (ρ1 = 0.9998 g/cm2, ρ2 = 0.9167 g/cm3, and ρ3 = 0.00059 g/cm3) of the system for temperature transitions from T 1 = 273 K to T 2 = 298 K and from T1 = 373 K to T 2 = 298 K was also revealed.  相似文献   

6.
The variation of the transverse magnetoresistance of YBa2Cu3O~6.95 high-temperature superconducting ceramic with external magnetic field intensity H ext first increasing from zero to ~500 Oe (Δρ+ / ρ273 K) and then decreasing from about 500 Oe to zero (Δρ? / ρ273 K) is studied for transport current densities varying from j/j c ≈ 0.01 to ≈0.99 (where j c is the critical current density in the absence of the magnetic field) at 77.3 K. It is found that the field dependence of the magnetoresistance of YBa2Cu3O~6.95 high-temperature superconductor is characterized by pronounced hysteresis, the difference Δρ+ / ρ273 K ? Δρ? / ρ273 K increasing with j/j c. As j/j c grows, the effective critical fields of Josephson weak links, H c2J , and the lower critical fields of superconducting grains, H c1A , decline. When field H ext rises, the critical fields are lower than when H ext diminishes: H c2J + < H c2J ? and H c1A + < H c1A ? .  相似文献   

7.
We report on the synthesis and measurements of the temperature dependences of the resistivity ρ, the penetration depth λ, and the upper critical magnetic field Hc2, for polycrystalline samples of dodecaboride ZrB12 and diboride MgB2. We conclude that ZrB12 behaves as a simple metal in the normal state with the usual Bloch-Grüneisen temperature dependence of ρ(T) and with a rather low resistive Debye temperature TR = 280 K (to be compared to TR = 900 K for MgB2). The ρ(T) and λ(T) dependences for these samples reveal a superconducting transition in ZrB12 at Tc = 6.0 K. Although a clear exponential λ(T) dependence in MgB2 thin films and ceramic pellets was observed at low temperatures, this dependence was almost linear for ZrB12 below Tc/2. These features indicate an s-wave pairing state in MgB2, whereas a d-wave pairing state is possible in ZrB12. In disagreement with conventional theories, we found a linear temperature dependence, of Hc2(T) for ZrB12 (Hc2(0) = 0.15 T).  相似文献   

8.
The crystal and magnetic structure of the Nd0.78Ba0.22CoO3 cobaltite is studied by neutron diffraction at high pressures up to 4.2 GPa in the temperature range 10–300 K. The pressure dependences of structural parameters are obtained. Ferromagnetic ordering of the Co sublattice is observed at normal pressure below T C ~ 140 K, and ferrimagnetic ordering of the Co and Nd sublattices with an antiparallel direction of magnetic moments appears at T F ~ 40 K. The magnetic moment of Co and the temperature T C change slightly under pressure, which points to the stability of the initial intermediate-spin (S = 1) state of Co3+ ions. This behavior differs considerably from the characteristic behavior of cobaltites that are close in chemical composition and structure and exhibit ferromagnetic ordering of only the Co sublattice. In these cobaltites, the magnetic moment of Co is substantially suppressed and T C decreases under pressure, which is related to the change in the state of Co3+ ions from the intermediate spin state to the nonmagnetic low-spin state (S = 0). The interplay between the appearance of the magnetic interaction of the R-Co sublattices and the stability of the spin state of Co3+ ions in the Nd0.78Ba0.22CoO3 cobaltite is discussed.  相似文献   

9.
Weakly mechanically stressed 40-nm-thick La0.67Ca0.33MnO3 films have been grown coherently on a (001)NdGaO3 substrate by laser evaporation. The electrical resistivity ρ of the La0.67Ca0.33MnO3 film reaches a maximum at a temperature T C ≈ 255 K. At temperatures below 0.6T C, the temperature dependences of ρ are well approximated by the relation ρ = ρdef + C 1 T 2 + C 2 T 4.5, in which the first term on the right-hand side accounts for the contribution of structural defects to electrical resistivity, and the second and third terms stand for those of the electron-electron and electron-magnon interactions, respectively. The parameters ρdef ≈ 1 x 10?4 Ω cm and C 1 ≈ 7.7 × 10?9 Ω cm K?2 do not depend on temperature and magnetic field H. The coefficient C 2 decreases with increasing H to reach about 4.9 × 10?15 Ω cm K?4.5 at μ0 H = 14 T.  相似文献   

10.
Specific heat studies under magnetic field and positron annihilation spectroscopy were carried out on 160 MeV Ne ion irradiated polycrystalline MgB2 samples. There is an unusual decrease in positron lifetime in the irradiated sample which may be due to neon ion implantation. This was also indicated by change in cell volume. Coincidence Doppler Broadening Spectra of Mg, B, irradiated and unirradiated MgB2 show that positrons primarily annihilate in boron sublattice in the unirradiated sample whereas there is some similarity of the spectrum of the irradiated sample with that of Mg. There is Mg deficiency in the unirradiated sample whereas predominantly boron vacancies exist in Ne ion irradiated MgB2 sample. Specific heat measurements show that there is a small increase in electronic part of the specific heat and electron-phonon coupling constant.  相似文献   

11.
160 MeV of neon ion irradiation has been carried out on MgB2 polycrystalline pellets at various doses. There has not been any significant change in Tc except at the highest dose of 1×1015 ions/cm2. Increase in resistivity has been noticed. Resistivity data have been fitted with Bloch-Grüneisen function to extract the values of Debye temperature, residual resistivity and temperature coefficient of resistivity for irradiated as well as unirradiated samples. There has not been any significant effect on electron-phonon coupling due to irradiation as evident from Debye temperature and the electron-phonon coupling constant.  相似文献   

12.
The behavior of the electrical resistivity ρ(T), the superconducting transition temperature T c , and the upper critical field H c2(T) of a polycrystalline sample of YNi2B2C irradiated by thermal neutrons with the subsequent high-temperature isochronous annealing in the temperature interval T ann = 100–1000°C has been studied. It has been found that the irradiation of YNi2B2C with a fluence of 1019cm?2 leads to the suppression of the superconductivity. The final disordered state is reversible; i.e., the initial ρ(T), T c , and H c2(T) values are almost completely recovered upon annealing at up to T ann = 1000°C. The quadratic dependence ρ(T) = ρ0 + a 2 T 2 is observed for the sample in the superconducting state (T c = 5.5?14.5 K). The coefficient a 2 (proportional to the square of the electron mass m*) hardly changes. The form of the dependence of T c on ρ0 can be interpreted as the suppression of the two superconducting gaps, Δ1 and Δ21 ~ 2Δ2). The degradation rate of Δ1 is about three times higher than that of Δ2. The dependences dH c2/dT on ρ0 and T c may be described by the relations for a superconductor in the intermediate limit (the coherence length ζ0 is on the order of the electron mean free path l tr) under the assumption of a nearly constant electron density of states on the Fermi level N(E F). The observed behavior of T c obviously does not agree with the widespread opinion about the purely electron-phonon mechanism of superconductivity in the compounds of this type supposing the anomalous type of superconducting pairing.  相似文献   

13.
A method has been developed to identify the sublattices of a crystal structure in which there are atomic vacancies. This method is based on determining the chemical environment of vacancies and is implemented using the method of the positron annihilation by measuring the momentum distribution of core electrons. To determine the characteristic momentum distribution of electrons, a special two-detector spectroscopy is used, which ensures measurements of Doppler broadening of the annihilation gamma-ray line with a high (up to 106) signal-to-noise ratio. To test the method, vacancies in irradiated silicon carbide (6H-SiC), sintered nonstoichiometric titanium carbides (TiC y ) and titanium monoxides (TiO y ), and chemically deposited lead and cadmium sulfides (PbS and CdS) have been identified. Vacancies in the carbon and silicon sublattices have been identified in silicon carbide after irradiation by low- and high-energy electrons, respectively. Vacancies in the nonmetal sublattice have been identified in TiC y . Vacancies in the metal sublattice have been identified in TiC y , as well as in PbS and CdS.  相似文献   

14.
The structure, electrical resistivity, and magnetoresistance of La0.67Sr0.33MnO3 heteroepitaxial films (120-nm thick) practically unstrained by lattice mismatch with the substrate were studied. A strong maximum of negative magnetoresistance of ≈27% (for μ0H = 4 T) was observed at T ≈360 K. While the magnetoresistance decreased monotonically in magnitude with decreasing temperature, it was still in excess of 2% at 150 K. For T < 250 K, the temperature dependence of the electrical resistivity ρ of La0.67Sr0.33MnO3 films is fitted well by the relation ρ = ρ0 + ρ 1(H)T2.3, where ρ0 = 1.1×10?4 Ω cm, ρ1(H = 0) = 1.8×10?9 Ω cm/K2.3, and ρ10H = 4 T)/ρ1(H = 0) ≈0.96. The temperature dependence of a parameter γ characterizing the extent to which the electrical resistivity of the ferromagnetic phase of La0.67Sr0.33MnO3 films is suppressed by a magnetic field (μ 0H = 5 T) was determined.  相似文献   

15.
La0.7Sr0.3Mn0.9Cu0.1O3 ceramic samples have been obtained by the conventional method of the solid-phase reaction, and their resistivity ρ has been investigated in a temperature range from 50 to 300 K in magnetic fields B = 0–20 T. Dependences are typical of perovskite manganites with a maximum at T max = 140–150 K and an increase in ρ near T max with increasing external magnetic field B. It has been established that the behavior of resistivity is caused by the variable range hopping conduction mechanism ρ(T) = ρ0(T)exp[(T 0/T)1/4], where ρ0(T) ~ T 25/4. The Mott variable range hopping conduction has been observed below the Curie temperature for La0.7Sr0.3Mn0.9Cu0.1O3 samples (T C ~ 300 K) in a temperature range from 300 to 200 K. The influence of Cu doping on the properties of La0.7Sr0.3MnO3 samples is apparently caused by an additional distortion introduced into the crystal lattice of the material and by a weakening of the double-exchange mechanism.  相似文献   

16.
Magnetization and Mossbauer studies reveal that R Rh2Si2 (R = rare earth) have two magnetic phase transitions, one corresponding to the ordering of the rare earth (TN = 27?130K) and the other to the itinerant electron ordering of the Rh sublattice (TM= 5?17K). LaRh2si2 has also been studied by resistivity, specific heat and a.c. susceptibility measurements. All studies indicate that LaRh2Si2 orders magnetically at TM= 7K and becomes superconducting, type II, at Tc= 3.8±0.2K.  相似文献   

17.
The structure, electrical resistivity, and magnetoresistance of predominantly oriented La0.67Ca0.33MnO3(30 nm)/LaAlO3 films are investigated after partial relaxation of biaxial mechanical stresses. The negative magnetoresistance MR of the films reaches a maximum at T = 235–240 K. The full width at half-maximum of the peak in the curve MR(T) for a film is five to six times greater than that for a manganite layer grown on a substrate with a small lattice mismatch. For T < 150 K, the temperature dependence of the electrical resistivity ρ of the films is fitted well by the relationship ρ = ρ0 + ρ1 (H)T 4.5, where ρ0 ≡ ρ(T = 4.2 K) and ρ1(H) is a parameter that is independent of temperature but dependent on the magnetic field H. The parameter ρ1(H = 0) for the La0.67Ca0.33MnO3(30 nm)/LaAlO3 films is several times larger than that for thin manganite layers only weakly strained by the substrate. The electrical resistivity ρ1 decreases almost linear as the quantity μ0 H increases in the field range 1–5 T.  相似文献   

18.
A new interpretation of the nature of the resonance in the quantum-yield K spectra of boron in the crystal 3C BN is proposed. This interpretation is based on calculation of the electronic energy band structure of the nonstoichiometric boron nitride 3C BN0.99, which is carried out by the local coherent potential method in the multiple-scattering approximation. The tops of the valence band and of the XANES range of nonstoichiometric and perfect crystals of boron nitride are compared with the x-ray photoelectron spectrum of 3C BN and the BK-absorption edge spectrum. The electronic states near the BK-absorption edge are modeled and discussed for the relaxed and metastable states caused by the formation of vacancies in the nitrogen sublattice.  相似文献   

19.
Oriented films of MgB2 high-Tc superconductor are synthesized by pulsed laser sputtering of stoichiometric MgB2 targets with subsequent annealing of the amorphous Mg-B material deposited onto MgO(111) substrates. The critical temperature of the films depends on the purity of the targets sputtered. The purification of boron powder in a vacuum makes it possible to minimize the content of impurities in the targets and to prepare MgB2 films exhibiting a critical temperature above 39 K and a sharp inductive transition. A high room-temperature to residual resistivity ratio (more than 3) indicates the good quality of the films.  相似文献   

20.
Precision measurements of the specific heat and spectral intensity I(ω) of Raman scattering for Lu N B12 single crystal samples with various boron isotopes (N = 10, 11, nat) have been performed at low and intermediate temperatures. A boson peak in the low-frequency part of the I(ω) spectrum has been observed for the first time for lutetium dodecaboride at liquid nitrogen temperatures. It has been shown that low-temperature anomalies in the specific heat, along with the features of Raman spectra, can be interpreted in terms of the transition to a cageglass state at T* = 50?70 K, which appears when Lu3+ ions are displaced from the centrosymmetric position in cavities of a rigid covalent boron sublattice towards the randomly located boron vacancies. The concentrations of various two-level systems that correspond to two types of vibrational clusters with correlation lengths of 12–15 and 18–22 Å, respectively, have been estimated. The vibrational density of states of LuB12 has been calculated from Raman spectra in the model of soft atomic potentials. An approach has been proposed to explain the dielectrization of the properties of the YbB12 compound at T < T*, as well as the features of the formation of magnetic structures in RB12 antiferromagnets (R = Tb, Dy, Ho, Er, Tm) and the suppression of superconductivity in LuB12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号