首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— –An attempt was made to identify some of the ultraviolet (u.v.) photoproducts of 5-bromouracil-labeled DNA (BrU-DNA). Two synthetic dinucleotides, 5-bromodeoxyuridylyl-(3' →5 ')-thymidine (BrdUpT) and 5-bromodeoxyuridylyl-(3' → 5')-deoxycytidine (BrdUpdC), were prepared. Each gave a single u.v. photoproduct which in turn gave a single acid hydrolysis product. 2-14C-BrU-DNA. prepared from E. coli B3, was irradiated (275–280 nm), hydrolyzed, and paper chromatographed in four systems. Comparison with the two synthetic photoproducts showed that if present at all, BrdUpT and BrdUpdC photoproducts could account for no more than 10 and 3.5 per cent respectively of the total photoproducts. At 55 per cent conversion of BrU into photoproducts, the major 14C-photoproduct was uracil (78 per cent); the remaining 22 per cent was made up of at least six products, three of which were reversed by 232 nm irradiation.
The debrominated cyclobutane structure proposed by Haug for BrdUpT photoproduct has been shown to be incorrect. It was found to contain one atom of bromine per molecule. On the basis of nuclear magnetic resonance and u.v. spectra, two possible structures are proposed for the photoproduct, each containing an eight-membered ring.  相似文献   

2.
FLUORESCENCE OF 5-METHYLCYTOSINE   总被引:2,自引:0,他引:2  
Abstract— 5-Methylcytosine and 5-methyldeoxycytidylic acid are fluorescent in aqueous solution at room temperature and neutral pH. 5-Methylcytosine, 10-3M, pH 8.5, 25°C, has a quantum yield of 5 ×10-4, 5-Methyldeoxycitydylic acid, 10-4M, pH 7.5, 20°C, has a quantum yield of 8 × 10-4. Emission maxima are 2.91 and 2.80μ-1. At pH 14, the quantum yield of 5-methylcytosine is 1.6 × 10-2; the emission maximum is 2.82μ-1. At pH I, the quantum yield of both compounds is less than or equal to 10-4. Both compounds were chromatographically homogeneous, had absorption spectra which agreed with published data, and excitation spectra which agreed closely with absorption spectra.  相似文献   

3.
Abstract. Pulsed laser photolysis at 347nm has been used to study the transient spectroscopy of alloxazine, lumichrome, lumiflavin, and riboflavin in acidic (pH 2.2) aqueous solution and in ethanol. Intersystem crossing quantum yields (φISC) were determined by a modification of the comparative laser excitation method which utilizes the variation of the triplet yield with intensity in conjunction with a kinetic model for the various photophysical and photochemical processes occurring during the pulse. Fluorescence quantum yields and lifetimes are also reported. Correction for quenching of the excited singlet state by H+ ions shows that, in neutral aqueous solution, intersystem crossing for flavins is an efficient process (φISC˜ 0.7) which, in conjunction with fluorescence, accounts for the fate of all absorbed photons. For alloxazine (φISC˜ 0.45) and lumichrome (φISC˜ 0.7) the results are more difficult to interpret owing to interconversion between alloxazine and isoalloxazine structures in the singlet excited state. For all four compounds, the quantum yield of products derived from the singlet excited state is estimated as ˜0.04. There is evidence of biphotonic product formation at high laser energies. In ethanol, where φISC for lumichrome is about twice that of lumiflavin, internal conversion between the excited singlet and ground states appears to be a significant process. Complete triplet-triplet absorption spectra in the region 260–750nm are reported. For lumichrome at pH 2.2 there is spectral evidence for isomeric triplet states which appear to be in equilibrium.  相似文献   

4.
Abstract— Ultraviolet irradiation of 14C-uracil in aqueous solution results in the formation of hydrate and dimer photoproducts. The rate of dimerization increases with increasing uracil concentration, and decreases with increasing concentration of oxygen in solution. The kinetics are in agreement with a model previously proposed to account for the reactions, in which dimerization occurs by a reaction involving the triplet state of uracil, but hydration occurs from an excited singlet state. Oxygen reduces dimer formation by quenching the triplet. The quantum yield for intersystem crossing (ISC) to the triplet depends on the irradiation wavelength, increasing from 0.0014 at 280 nm to 0.016 at 230 nm. The ratio of rate constants for reaction of the triplet with oxygen and for dimerization is 1.1; the ratio of rate constants for triplet decay and for dimerization is 5.9 × 10-5 M. The increase in ISC with photon energy suggests that ISC is favoured from excited vibrational levels. The quantum yield for hydration is about 0.002 at pH 4.5 for all wavelengths, but increases as the pH is decreased.  相似文献   

5.
Abstract— Flash photolysis experiments on the hydroxylation of lumichrome (L) in aqueous 0.5 M H2SO4 solution in the presence of O2 or Ni2+ as triplet quenchers and quantum yield measurements confirm the assignment of the photoreactive species to the protonated form of the excited singlet state. A mechamism concerning the photochemical step is proposed, accounting for the formation of protonated 9-hydroxy-5,10-dihydrolumichrome (LOH3+). This primary stable photoproduct was characterized by spectral and kinetic data. The dark reactions originating from LOH3+ were investigated, and data regarding the successive steps are presented. The reaction LOH3+ L→ LO + LH3+ is demonstrated to be a two-electron reduction. The rate constant for the reaction of LH2+ with O2 is much larger than that for the oxidation of LH3+ by oxygen.  相似文献   

6.
HEMATOPORPHYRIN PHOTOSENSITIZATION OF SERUM ALBUMIN and SUBTILISIN BPN'   总被引:1,自引:0,他引:1  
—The photosensitized inactivation of subtilisin BPN' by free hematoporphyrin (HP) followed exponential kinetics with positive mechanistic tests for the involvement of singlet oxygen (1O2) as the principal intermediate. The photoinactivation quantum yield was 0.029 at 390 nm in oxygen-saturated, D2O buffer at pH 7.0. The effects of HP binding were investigated for tryptophan oxidation in bovine serum albumin (BSA) and human serum albumin (HSA) at high protein:HP concentration ratios where the HP was > 97% complexed. The reaction kinetics were non-exponential and mimick a second-order process in the initial stages. The rate of HP photobleaching was 30-fold faster for complexed HP compared with free HP, which was shown to account for the observed kinetics. Mechanistic tests showed that 1O2 was the dominant photooxidizing intermediate of tryptophan residues and that it was not involved in the accompanying photobleaching of HP. The quantum yield for tryptophan oxidation in BSA was 0.11 at 390 nm in oxygen-saturated, D2O buffer at pH 8.0. The reactivity of HSA was approximately 2-fold lower than BSA for equivalent conditions. Estimates of the reaction cross sections led to 3 Å2 for the inactivation of subtilisin BPN' by 1O2 and 20 Å2 for the oxidation of tryptophan in BSA.  相似文献   

7.
Abstract— The two main primary photoprocesses (electron ejection and H-atom release) for indole, 5-methoxyindole and N-methylindole in various polar and nonpolar solvents were studied as a function of the excitation energy and were correlated with the corresponding fluorescence quantum yields. In hydrocarbon solvents, N–H bond cleavage is the main primary photoprocess from the 1Bb band of the substrates with the exception of N-methylindole. In alcohols, both processes are of negligible importance. Hydrated electrons (eaq) are ejected from the relaxed singlet states of all three compounds in aqueous solutions with a similar yield for excitation at 280 and 254 nm (1La and 1Lb states). The yield increases when the excitation is into the 1Bb band. The quantum yields of the two primary processes from the higher excited states are generally lower than the fraction of molecules not converting to the fluorescent state. This is explained by an efficient back reaction in competition with a thermally activated radical release from an intermediate state or radical pair formed from the S2 (1Bb) state. The non-occurrence of a photoionization energy threshold is discussed.  相似文献   

8.
Abstract— The characteristics of the fluorescence and phosphorescence emission of 2-amino-4 (3H) pteridinone (or pterin) in aqueous solutions are pH dependent. The room temperature fluorescence quantum yield is low and is maximum at pH = 10 (φF∼ 0.057). The 77K phosphorescence emission consists of two overlapping emissions originating from τ* triplet states. In agreement with low temperature results, the 353nm laser flash photolysis makes it possible to detect at pH 9.2, two transient triplet absorptions (τ1∼ 0.3 μs and τ2∼ 2.3 μs). The longer lived triplet is characterized by φTM∼ 0.20 and ∼ (550nm) = 2000 M −1 cm−1. It reacts with the solvent forming the semireduced pterin with a quantum yield φR∼ 0.06. The photosensitizing properties of pterin have been studied by laser flash spectroscopy and steady state irradiations. Photoreactions implying singlet oxygen formation are shown to occur. Laser flash spectroscopy indicates that the pterin triplet is reduced by amino acids and nucleic acid bases. Corresponding bimolecular reaction rate constants have been measured.  相似文献   

9.
Abstract— The acid-base equilibria of the excited singlet and triplet states of acridine orange (AO) were studied by flash-photolysis and fluorometric methods. The dye is a stronger base in the first excited singlet state (pKs= 13.3) than in the triplet and ground states (pKr= 10.3: pKc, = 10.2); acridine orange follows the trend observed with some other heterocyclic compounds, viz. pKs > pKr= pK,c. At room temperature, an anomalous fluorescence occurs from the dye in basic media: the assignment of this emission is discussed.
The semi-reduced dye was studied as a function of pH. In a large pH range (3–14), only the protolytic equilibrium between the cationic (AOH2+) and the neutral (AOH) radicals was observed; the pK value corresponding to this equilibrium was found to be in the range of pH 5–6.  相似文献   

10.
Abstract— The Stern-Volmer constants for fluorescence quenching by tetramethylethylene decrease in the order DMC ≫ DHP > F-2 > 8-MOP. The same order was observed for the quantum yields of [2+2] cycloaddition reaction with tetramethylethylene on direct irradiation. In [2+2] photocycloaddition of F-2 with tetramethylethylene in ethanol, the ratio of quantum yields deduced from singlet and triplet states of F-2; φ3010, is about 5. The excited triplet state is the reactive state for the [2+2] photocycloaddition of F-2 with tetramethylethylene in solution but the excited singlet state of F-2 becomes very important in biological conditions.  相似文献   

11.
Abstract— Quantum yields for the lumiflavin-sensitized oxidation of guanosine monophosphate and adenosine monophosphate in solution have been measured as functions of oxygen and nucleotide concentration. The quantum yield increases with oxygen concentration at low oxygen concentrations, but quenching of the excited flavin molecule by oxygen results in a fall in quantum yield at higher concentrations. It has also been established that the reciprocal of the quantum yield is linearly related to the reciprocal of the nucleotide concentration. A mechanism in which molecular oxygen reacts with an excited complex formed between triplet lumiflavin and the nucleotide is consistent with these observations.
A value for the second-order rate constant for the quenching of triplet lumifiavin by oxygen of 2·65 × 109 M -1 sec-1 has been obtained.  相似文献   

12.
Abstract— A fluorescence quantum yield (emission at650–850 nm) of π= (2.3 ± 0.3)10−3 was measured for the red-absorbing form (Pr) of 124-kDa phytochrome from etiolated oat seedlings ( Avena sativa ) upon excitation in the Soret band at Λexc= 380 nm. The small difference between this value and the previously determined quantum yield with Λexc= 640 nm, π= (3.5 ± 0.4)10−3is attributed to a blue-absorbing emitter responsible for the "anomalous" or "blue" emission of the chromoprotein in the region from ca. 400 to 550 nm. The absorption of Pr at 380 nm is consequently somewhat lower than that measured directly from the spectrum. Processes from upper excited states of the Pr phytochromobilin-derived chromophore other than rapid relaxation to the emitting state are not important. A quantum yield of Φ ' 1.2 times 10−3 is estimated for the blue fluorescence. The proportion of the blue emitters relative to Pr appears to be relatively high.  相似文献   

13.
BIOLOGICAL CHEMILUMINESCENCE   总被引:4,自引:0,他引:4  
Abstract
The nucleobase 5-methylcytosine ( I ) is a minor component of eukaryotic DNA thought to be important in regulation of gene expression. The photochemical reactions of this nucleobase and its 2'-deoxyribonucleoside, 5-methyl-2'-deoxycytidine ( II ), in water have been studied. These reactions lead, respectively, to 3-amino-2-methylacrylamidine ( Ib ) and 3-(2- erythro - d -pentopyranos-1-yl) amino-2-methylacrylamidine ( IIb ) as the main photoproducts. The structure of the photoproducts was established by spectroscopic methods (1H and 13C NMR, UV spectroscopy, electron impact and liquid secondary ion mass spectrometry); in the case of Ib , confirmatory evidence was obtained by chemical methods (photolysis of 5-methyl[2–13C]cytosine, hydrolysis of N -carbomethoxy-3-amino-2-methylacryl-amidine and reaction of Ib with 1,1'-carbonyldiimidazole to give I ). The quantum yield for formation of Ib was determined to be 1.8 × 10-3at pH 7.5 while the quantum yield for formation of IIb has a lower value of 0.2 × 10-3 at pH 7.5. These quantum yields depend strongly on pH and reach maximum values of 2.0 × 10-3 at pH 7.0 ( Ib ) and 0.6 × 10-3 at pH 5.0 ( IIb ). The mechanism of formation of Ib (or IIb ) is proposed to involve nucleophilic attack of water on the C-2 position of photoexcited I (or II ), followed by ring opening and decarboxylation of an intermediate carbamic acid.  相似文献   

14.
Abstract— 1. Irradiation with 315 mμ light inactivates phage T4v-x C, and T4v-x- , and forms thymine dimers in their DNA.
2. Both the rates of inactivation and of thymine dimerization depend upon pH and gaseous environment during irradiation. The U.V. sensitivities are: 1 (pH 7, N2, 03, 2.2 (pH 3.5, Oz), 3.3 (pH 3–5, N2; and the corresponding rates of thymine dimerization 1: 2.5: 5.2. The number of thymine dimers per lethal hit observed withT4v-x + are: 5.7 (pH 7, N2, O2, 5.4 (pH 3.5, O2, 10.9 (pH 3.5, N2); and forT4v-x-: 4.6, 3.4, and 7.1 with the same sequence of conditions.
3. Also the photoreactivable sectors depend upon the environmental conditions at 315 mp inactivation. In T4v-x f this sector amounts to about 50 per cent at pH 7, 18 per cent at pH 3.5, O., and 29 per cent at pH 3.5, N, respectively.
4. The molecular basis of these findings is discussed. It is concluded that, besides thymine dimer, at least one other lethal photoproduct (probably a photoproduct of cytosine) is involved in photoreactivation.  相似文献   

15.
The photooxidation of N,N -diethylhydroxylamine (DEHA) by Rose Bengal (RB) has been investigated in micellar and nonmicellar aqueous solutions. We measured the quantum yield of oxygen consumption forming H2O2 and monitored two intermediates, the superoxide and diethylnitroxide radicals. When the pH was vaned, the quantum yield of oxidation remained constant for 6 < pH < 10.5, decreased in acidic pH, and increased considerably in NaOH solution; these changes could be attributed to the protonation and dissociation processes of the >N-OH moiety of DEHA. The formation of diethylnitroxide radical was enhanced by superoxide dismutase or strong alkaline solution. Around neutral pH, the oxidation proceeded mainly via electron transfer from DEHA to the RB triplet ( k q = 107 M -1 s-1) with little 1O2 participation ( kq < 105 M -1 s-1). However, when RB was incorporated into micelles in alkaline solution, the contribution of the singlet oxygen pathway increased at the expense of electron transfer, which was inhibited by the less polar micellar environment. Dark autoxidation of DEHA was accelerated by heavy metal impurities and increased very strongly in NaOH solution.  相似文献   

16.
Abstract— The mechanism of the photoreduction of 9,10-anthraquinone (AQ) in alcohol and hexane has been studied by flash photolysis. The fluorescence spectrum of the photoproduct, 9,10-dihydroxy anthracene shows a large shift between hexane and ethanol. The quantum yields of photoreduction for AQ are solvent-dependent, the reaction between the solvent radical and AQ determining the quantum yield.
The absorption spectrum of the 9,10-anthrasemiquinone (AQH.) has a long-wavelength absorption band with peaks at 631 and 678 nm. The second-order decay constants for AQH. were estimated to be 1.3 × 109, 6.7 × 108 and 2.0 × 108 M -1 sec-1 in ethanol, 2-propanol and ethylene glycol, respectively.
A long-wavelength absorption band was observed for 9,10-anthrasemiquinone radical anion, having peaks at 776 and 860 nm; epsi;max= 1900 at 776 nm. This spectrum is compared with the spectra of 9,10-dihydroxy anthracene mono- and di-anions. The 9,10-anthrasemiquinone radical anion was found to photoreduce quantitatively to 9,10-dihydroxy anthracene mono-anion with a quantum yield of 0.1.  相似文献   

17.
Abstract— –Problems associated with the protolytic equilibria of thionine and related molecules in their lowest excited electronic states were investigated. The theoretical arguments are based on semi-empirical SCF MO (CI) calculations for the π-electronic system of these molecules; all singly excited configurations were included in the CI. The results indicate that the basic form of thionine in its ground, first excited singlet and lowest triplet state is protonated at the heterocyclic N atom. The difference of the p K values of these three states can be explained in terms of the calculated charge densities. The photochemical reactivity of the lowest triplet of the acidic form of thionine (3TH22+) differs greatly from that of the lowest triplet of the basic form (3TH+). Some arguments for the assignment of nπ* character to 3TH22+ and ππ* character to 3TH+ are advanced.  相似文献   

18.
Abstract— The photolysis of aqueous solutions of cis -[Cr(C2O4)2(H2O)2]- at 254 nm and pH 4 produced CO2 and H2 in nearly equal yields. The quantum yield of hydrogen, φ2, increased by 9% and the yield of carbon dioxide, φ, by 65% as the pH was lowered from 4 to I. The total gas yield, φgas, decreased in the presence of added oxalate or chromium (II) ions and when the light intensity was lowered. The gas yield in D2O was appreciably higher than in H2O. The variation of φgas with pH (D) and with added oxalate ion was roughly parallel in the two liquid media. The gas yield increased in the series:
A tentative mechanism is suggested to explain the results.  相似文献   

19.
Abstract— The excited states of bilirubin (BR) in a variety of environments have been studied by 347 nm laser flash photolysis. Quantum yields of formation of triplet BR have been shown to be less than 0.005 in solution in water ( p H 9–11), methanolic ammonia, 10% aqueous mulgofen and in cetyl trimethyl-ammonium bromide. In benzene the quantum yield was 0.01 although this diminished to less than 0.005 on addition of triethylamine. Permanent products are formed with benzene and with 1% methanolic ammonia. With BR in HSA a transient decaying with k = 3.5 × 105 s-1 is formed by a monophotonic process together with a permanent product. Neither species is affected by oxygen or by iodide ion. Both originate from BR molecules in the strongest binding site in the HSA. The yields of both species are unaffected by salt but are temperature dependent. The decay of the transient is strongly temperature dependent corresponding to an activation energy of about 50–60 kj mol-1. If this transient is a triplet it is formed with a quantum yield of 0.13 ± 0.01. The relevance of these results to an understanding of the photo therapeutic process is discussed.  相似文献   

20.
Abstract— Both [15-13C] and [14-13C] all-trans-retinals were synthesized. Bacteriorhodopsin containing [14-13C]retinal as a chromophore, when solubilized with octyl-β-D-glucoside, showed characteristic resonances at 125 and 118 ppm from tetramethyl silane. The former was assigned to the signal from free retinal and the latter from protonated Sehiff base. When the bacteriorhodopsin was denatured in sodium dodecyl sulfate, the signal at 118 ppm disappeared, while the signal at 125 ppm rather increased.
In the case of bacteriorhodopsin containing [15-13C]retinal, when solubilized with Triton X-100, a characteristic resonance at 169 ppm was distinguishable as a shoulder peak superimposed on the broad signal of carbonyl carbons and it was assigned to the signal from the protonated Sehiff base. The other signal observed at 191 ppm was from free retinal.
These results suggested that the Sehiff base of bacteriorhodopsin is protonated in the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号