首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin–Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.  相似文献   

2.
We consider the synchronized periodic oscillation in a ring neural network model with two different delays in self-connection and nearest neighbor coupling. Employing the center manifold theorem and normal form method introduced by Hassard et al., we give an algorithm for determining the Hopf bifurcation properties. Using the global Hopf bifurcation theorem for FDE due to Wu and Bendixson's criterion for high-dimensional ODE due to Li and Muldowney, we obtain several groups of conditions that guarantee the model have multiple synchronized periodic solutions when the transfer coefficient or time delay is sufficiently large.  相似文献   

3.
In this article, the synchronization problem of uncertain complex networks with multiple coupled time‐varying delays is studied. The synchronization criterion is deduced for complex dynamical networks with multiple different time‐varying coupling delays and uncertainties, based on Lyapunov stability theory and robust adaptive principle. By designing suitable robust adaptive synchronization controllers that have strong robustness against the uncertainties in coupling matrices, the all nodes states of complex networks globally asymptotically synchronize to a desired synchronization state. The numerical simulations are given to show the feasibility and effectiveness of theoretical results. © 2014 Wiley Periodicals, Inc. Complexity 20: 62–73, 2015  相似文献   

4.
This article focuses on the problem of Guaranteed cost synchronization of complex networks with uncertainties and time‐Varying delays. Sufficient conditions for the existence of the optimal guaranteed cost control laws are introduced in the light of linear matrix inequalities via the Lyapunov–Krasovskii stability theory. The time‐varying node delays and time‐varying coupling delays are simultaneously regarded in the complex network. The node uncertainties and coupling uncertainties are simultaneously considered as well. Numerical simulations are provided to account for the effectiveness and robustness of the proposed method. The results in this article generalize and improve the corresponding results of the recent works. © 2015 Wiley Periodicals, Inc. Complexity 21: 381–395, 2016  相似文献   

5.
The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.  相似文献   

6.
The impact of inhibitory and excitatory synapses in delay-coupled Hodgkin–Huxley neurons that are driven by noise is studied. If both synaptic types are used for coupling, appropriately tuned delays in the inhibition feedback induce multiple firing coherence resonances at sufficiently strong coupling strengths, thus giving rise to tongues of coherency in the corresponding delay-strength parameter plane. If only inhibitory synapses are used, however, appropriately tuned delays also give rise to multiresonant responses, yet the successive delays warranting an optimal coherence of excitations obey different relations with regards to the inherent time scales of neuronal dynamics. This leads to denser coherence resonance patterns in the delay-strength parameter plane. The robustness of these findings to the introduction of delay in the excitatory feedback, to noise, and to the number of coupled neurons is examined. Mechanisms underlying our observations are revealed, and it is suggested that the regularity of spiking across neuronal networks can be optimized in an unexpectedly rich variety of ways, depending on the type of coupling and the duration of delays.  相似文献   

7.
In this paper, a graph‐theoretic approach for checking exponential stability of the system described by neutral stochastic coupled oscillators network with time‐varying delayed coupling is obtained. Based on graph theory and Lyapunov stability theory, delay‐dependent criteria are deduced to ensure moment exponential stability and almost sure exponential stability of the addressed system, respectively. These criteria can show how coupling topology, time delays, and stochastic perturbations affect exponential stability of such oscillators network. This method may also be applied to other neutral stochastic coupled systems with time delays. Finally, numerical simulations are presented to show the effectiveness of theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Recently developed continuum phase field models for brittle fracture show excellent modeling capability in situations with complex crack topologies including branching in the small and large strain applications. This work presents a generalization towards fully coupled multi-physics problems at large strains. A modular concept is outlined for the linking of the diffusive crack modeling with complex multi field material response, where the focus is put on the model problem of finite thermo-elasticity. This concerns a generalization of crack driving forces from the energetic definitions towards stress-based criteria, the constitutive modeling of degradation of non-mechanical fluxes on generated crack faces. Particular assumptions are made on the generation of convective heat exchanges approximating surface load integrals of the sharp crack approach by distinct volume integrals. The coupling effect is also shown in generation of cracks due to thermally induced stress states. We finally demonstrate the performance of the phase field formulation of fracture at large strains by means of representative numerical examples. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The network of the pulse-coupled oscillators is studied in the presence of coupling delays. Because of the delays the past activity of the network is capable to influence the future network dynamics. In general case this leads to the infinite dimension of the corresponding dynamical system. We prove the Theorem that states that under certain conditions (weak coupling and appropriate initial conditions) the network can be fully characterized by a finite dimensional state vector. We construct the return map describing the evolution of this state vector over time. This map does not need any presupposed activity pattern in the network and works for any initial conditions.  相似文献   

10.
In many real systems, there exists community or hierarchical structure. When information or instruction transmits from one community to another or from one level to another, there may exist delays, i.e., the coupling delays between two nodes of different communities or layers. In view of this, chaotic dynamical networks with community structure and multiple coupling delays are studied in this paper. By viewing the coupling delays as unknown parameters, an approach based on synchronization is proposed to identify these unknown parameters. The sufficient conditions for the realization of parameter identification are obtained. Numerical examples verify the effectiveness of this method.  相似文献   

11.
This paper investigates the trajectory tracking control of the networked multimanipulator with the existence of time‐varying delays and uncertainties in both kinematics and dynamics. To address time‐varying delays in the communication links, a novel control scheme is established by the design of delay–rate‐dependent networking mutual coupling strengths. Besides, to handle the kinematic and dynamic uncertainties, an adaptive controller is designed. The proposed control scheme guarantees that the networked robotic system can track a commonly desired trajectory cooperatively with the strongly connected communication graph, uncertainties, and time‐varying communicating delays. A Lyapunov–Krasovskii functional is employed to rigorously prove the asymptotic convergence of both tracking errors and synchronization errors. The simulation results are provided to verify the effectiveness of the control method proposed by this paper.  相似文献   

12.
The dynamic loading of a rock mass during explosion of a borehole explosive is studied using a continuum mechanics approach in two-dimensional plane and axially symmetric formulations with the aid of a modified finite element method [1, 2]. This numerical technique makes it possible to study wave processes in a rock mass owing to explosions of single charges as well as those of systems of borehole explosives under different conditions. These include varying the site at which the charge is initiated and accounting for the propagation velocity of detonations in the explosive, so it is possible to calculate the shape of the stress field created by a charge with a given design. Numerical simulation of the explosion process for multiple borehole explosive charges with delays relative to one another can be used to obtain the optimum delay time for initiation and the distances between the charges. These results can also extend our concepts of the processes taking place in a rock mass during explosive fracture.  相似文献   

13.
We present a mechanism for synchronizing time delay systems using one way coupling with a variable delay in coupling that is reset at finite intervals. We present the analysis of the error dynamics that helps to isolate regions of stability of the synchronized state in the parameter space of interest for single and multiple delays. We supplement this by numerical simulations in a standard time delay system like Mackey Glass system. This method has the advantage that it can be adjusted to be delay or anticipatory in synchronization with a time which is independent of the system delay. We demonstrate the use of this method in communication using the bi channel scheme. We show that since the synchronizing channel carries information from transmitter only at intervals of reset time, it is not susceptible to an easy reconstruction.  相似文献   

14.
We show that for large coupling delays the synchronizability of delay-coupled networks of identical units relates in a simple way to the spectral properties of the network topology. The master stability function used to determine stability of synchronous solutions has a universal structure in the limit of large delay: it is rotationally symmetric around the origin and increases monotonically with the radius in the complex plane. We give details of the proof of this structure and discuss the resulting universal classification of networks with respect to their synchronization properties. We illustrate this classification by means of several prototype network topologies.  相似文献   

15.
采用具有加权向量范数型李雅谱诺夫函数,对具滞后中立型线型大系统进行模型集结,得到集结系统;再运用比较原理与时域中的微分积分不等式,讨论相应集结系统,从而通过集结系统的稳定性,获得了具滞后中立型大系统的指数稳定性。  相似文献   

16.
In this article, the mean square exponential synchronization of a class of impulsive coupled neural networks with time‐varying delays and stochastic disturbances is investigated. The information transmission among the systems can be directed and lagged, that is, the coupling matrices are not needed to be symmetrical and there exist interconnection delays. The dynamical behaviors of the networks can be both continuous and discrete. Specially, the time‐varying delays are taken into consideration to describe the impulsive effects of the system. The control objective is that the trajectories of the salve system by designing suitable control schemes track the trajectories of the master system with impulsive effects. Consequently, sufficient criteria for guaranteeing the mean square exponential convergence of the two systems are obtained in view of Lyapunov stability theory, comparison principle, and mathematical induction. Finally, a numerical simulation is presented to show the verification of the main results in this article. © 2015 Wiley Periodicals, Inc. Complexity 21: 190–202, 2016  相似文献   

17.
In this paper, the global exponential synchronization is investigated for an array of asymmetric neural networks with time-varying delays and nonlinear coupling, assuming neither the differentiability for time-varying delays nor the symmetry for the inner coupling matrices. By employing a new Lyapunov-Krasovskii functional, applying the theory of Kronecker product of matrices and the technique of linear matrix inequality (LMI), a delay-dependent sufficient condition in LMIs form for checking global exponential synchronization is obtained. The proposed result generalizes and improves the earlier publications. An example with chaotic nodes is given to show the effectiveness of the obtained result.  相似文献   

18.
In this paper, a free boundary problem modeling tumor growth under the direct effect of an inhibitor with time delays is studied. The delays represent the time taken for cells to undergo mitosis. Nonnegativity of solutions, the existence of the stationary solutions and their asymptomatic behavior are studied. The results show that when the inhibitor is large, and the initial tumor is not too large, the tumor will disappear. If however, the initial tumor is large enough, then it will grow. When the inhibitor is not as large, the growth of the tumor is determined by the size of the nutrients and whether the initial tumor is large or not. When the inhibitor is smaller, the tumor will grow no matter if the initial tumor is large or not.  相似文献   

19.
The stability of traveling wave solutions of the reaction diffusion model is a very important research topic. The globally nonlinear stability of traveling wavefronts for a discrete cooperative Lotka-Volterra system with delays was studied. More precisely, for the initial perturbation decaying exponentially to the traveling wavefronts with a relatively large speed at infinity, but arbitrarily large speeds in other positions, by means of the L2⁃ weighted energy method, the comparison principle and the squeezing technique, such traveling wavefronts were obtained and proved to be of exponentially asymptotic stability. Moreover, the problem of establishing the energy estimates was solved under the actions of the discrete dispersal operator and the time delays. In short, the extension of the weighted energy method to discrete systems with delays, enriches the relative research. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

20.
The purpose of this paper is to study the dynamics of a monopolistic firm in a continuous-time framework. The firm is assumed to be boundedly rational and to experience time delays in obtaining and implementing information on output. The dynamic adjustment process is based on the gradient of the expected profit. The paper is divided into three parts: we examine delay effects on dynamics caused by one-time delay and two-time delays in the first two parts. Global dynamics and analytical results on local dynamics are numerically confirmed in the third part. Four main results are demonstrated. First, the stability switch from stability to instability occurs only once in the case of a single delay. Second, the alternation of stability and instability can continue if two time delays are involved. Third, the occurence of Hopf bifurcation is analytically shown if stability is lost. Finally, in a bifurcation process, there are a period-doubling cascade to chaos and a period-halving cascade to the equilibrium point in the case of two time delays if the difference between the two delays is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号