首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we propose interior-point algorithms for $P_* (\kappa )$ -linear complementarity problem based on a new class of kernel functions. New search directions and proximity measures are defined based on these functions. We show that if a strictly feasible starting point is available, then the new algorithm has $\mathcal{O }\bigl ((1+2\kappa )\sqrt{n}\log n \log \frac{n\mu ^0}{\epsilon }\bigr )$ and $\mathcal{O }\bigl ((1+2\kappa )\sqrt{n} \log \frac{n\mu ^0}{\epsilon }\bigr )$ iteration complexity for large- and small-update methods, respectively. These are the best known complexity results for such methods.  相似文献   

2.
In the given article, enveloping C*-algebras of AJW-algebras are considered. Conditions are given, when the enveloping C*-algebra of an AJW-algebra is an AW*-algebra, and corresponding theorems are proved. In particular, we proved that if $\mathcal{A}$ is a real AW*-algebra, $\mathcal{A}_{sa}$ is the JC-algebra of all self-adjoint elements of $\mathcal{A}$ , $\mathcal{A}+i\mathcal{A}$ is an AW*-algebra and $\mathcal{A}\cap i\mathcal{A} = \{0\}$ then the enveloping C*-algebra $C^*(\mathcal{A}_{sa})$ of the JC-algebra $\mathcal{A}_{sa}$ is an AW*-algebra. Moreover, if $\mathcal{A}+i\mathcal{A}$ does not have nonzero direct summands of type I2, then $C^*(\mathcal{A}_{sa})$ coincides with the algebra $\mathcal{A}+i\mathcal{A}$ , i.e. $C^*(\mathcal{A}_{sa})= \mathcal{A}+i\mathcal{A}$ .  相似文献   

3.
We study the topology of spaces related to Kac–Moody groups. Given a Kac–Moody group over $\mathbb C $ , let $\text {K}$ denote the unitary form with maximal torus ${{\mathrm{T}}}$ having normalizer ${{\mathrm{N}}}({{\mathrm{T}}})$ . In this article we study the cohomology of the flag manifold $\text {K}/{{{\mathrm{T}}}}$ as a module over the Nil-Hecke algebra, as well as the (co)homology of $\text {K}$ as a Hopf algebra. In particular, if $\mathbb F $ has positive characteristic, we show that $\text {H}_*(\text {K},\mathbb F )$ is a finitely generated algebra, and that $\text {H}^*(\text {K},\mathbb F )$ is finitely generated only if $\text {K}$ is a compact Lie group . We also study the stable homotopy type of the classifying space $\text {BK}$ and show that it is a retract of the classifying space $\text {BN(T)}$ of ${{\mathrm{N}}}({{\mathrm{T}}})$ . We illustrate our results with the example of rank two Kac–Moody groups.  相似文献   

4.
In this paper, let $n$ be a positive integer and $P=diag(-I_{n-\kappa },I_\kappa ,-I_{n-\kappa },I_\kappa )$ for some integer $\kappa \in [0, n]$ , we prove that for any compact convex hypersurface $\Sigma $ in $\mathbf{R}^{2n}$ with $n\ge 2$ there exist at least two geometrically distinct P-invariant closed characteristics on $\Sigma $ , provided that $\Sigma $ is P-symmetric, i.e., $x\in \Sigma $ implies $Px\in \Sigma $ . This work is shown to extend and unify several earlier works on this subject.  相似文献   

5.
In this paper we study uniform distribution properties of digital sequences over a finite field of prime order. In 1998 it was shown by Larcher that for almost all $s$ -dimensional digital sequences $\mathcal{S }$ the star discrepancy $D_N^*$ satisfies an upper bound of the form $D_N^*(\mathcal{S })=O((\log N)^s (\log \log N)^{2+\varepsilon })$ for any $\varepsilon >0$ . Generally speaking it is much more difficult to obtain good lower bounds for specific sequences than upper bounds. Here we show that Larchers result is best possible up to some $\log \log N$ term. More detailed, we prove that for almost all $s$ -dimensional digital sequences $\mathcal{S }$ the star discrepancy satisfies $D_N^*(\mathcal{S }) \ge c(q,s) (\log N)^s \log \log N$ for infinitely many $N \in \mathbb{N }$ , where $c(q,s)>0$ only depends on $q$ and $s$ but not on $N$ .  相似文献   

6.
We investigate spectral properties of operators of the form $$\begin{aligned} P_\mu f(z):=-\frac{1}{(1-z)^{\mu +1}}\int _1^z f(\zeta )(1-\zeta )^{\mu }\,d\zeta \end{aligned}$$ and $$\begin{aligned} Q_\mu f(z):=(1-z)^{\mu -1}\int _0^z f(\zeta )(1-\zeta )^{-\mu }\,d\zeta \quad (z\in \mathbb{D }) \end{aligned}$$ acting on the analytic Besov spaces $B_p$ and the little Bloch space $\mathcal B _0$ . For $X=B_p$ , $1\le p\le \infty $ , or $X=\mathcal B _0$ , we identify the spectra of $P_\mu $ and $Q_\mu $ in $\mathcal{L }(X)$ , as well as, in the case $X\ne B_\infty $ , the essential spectrum and index together with one sided analytic resolvents in the Fredholm regions of $P_\mu $ and $Q_\mu $ .  相似文献   

7.
We prove that, in any fine structural extender model with Jensen’s λ-indexing, there is a ${\square(\kappa^{+})}$ -sequence if and only if there is a pair of stationary subsets of ${\kappa^{+} \cap {\rm {cof}}( < \kappa)}$ without common reflection point of cofinality ${ < \kappa}$ which, in turn, is equivalent to the existence of a family of size ${ < \kappa}$ of stationary subsets of ${\kappa^{+} \cap {\rm {cof}}( < \kappa)}$ without common reflection point of cofinality ${ < \kappa}$ . By a result of Burke/Jensen, ${\square_\kappa}$ fails whenever ${\kappa}$ is a subcompact cardinal. Our result shows that in extender models, it is still possible to construct a canonical ${\square(\kappa^{+})}$ -sequence where ${\kappa}$ is the first subcompact.  相似文献   

8.
We show that for any $n$ real periodic functions $f_1,\ldots , f_n$ with the same period, such that $f_i>0$ for $i<n$ , and a real number $\varepsilon >0$ , there is a closed curve in $\mathbb R ^{n+1}$ with curvatures $\kappa _1, \ldots , \kappa _n$ such that $\left| \kappa _{i(t)}-f_{i(t)}\right|<\varepsilon $ for all $i$ and $t$ . This does not hold for parametric families of closed curves in $\mathbb R ^{n+1}$ .  相似文献   

9.
Let $G$ be a unipotent algebraic group over an algebraically closed field $\mathtt{k }$ of characteristic $p>0$ and let $l\ne p$ be another prime. Let $e$ be a minimal idempotent in $\mathcal{D }_G(G)$ , the $\overline{\mathbb{Q }}_l$ -linear triangulated braided monoidal category of $G$ -equivariant (for the conjugation action) $\overline{\mathbb{Q }}_l$ -complexes on $G$ under convolution (with compact support) of complexes. Then, by a construction due to Boyarchenko and Drinfeld, we can associate to $G$ and $e$ a modular category $\mathcal{M }_{G,e}$ . In this paper, we prove that the modular categories that arise in this way from unipotent groups are precisely those in the class $\mathfrak{C }_p^{\pm }$ .  相似文献   

10.
Let $\mathcal{R }$ be a prime ring of characteristic different from $2, \mathcal{Q }_r$ the right Martindale quotient ring of $\mathcal{R }, \mathcal{C }$ the extended centroid of $\mathcal{R }, \mathcal{I }$ a nonzero left ideal of $\mathcal{R }, F$ a nonzero generalized skew derivation of $\mathcal{R }$ with associated automorphism $\alpha $ , and $n,k \ge 1$ be fixed integers. If $[F(r^n),r^n]_k=0$ for all $r \in \mathcal{I }$ , then there exists $\lambda \in \mathcal{C }$ such that $F(x)=\lambda x$ , for all $x\in \mathcal{I }$ . More precisely one of the following holds: (1) $\alpha $ is an $X$ -inner automorphism of $\mathcal{R }$ and there exist $b,c \in \mathcal{Q }_r$ and $q$ invertible element of $\mathcal{Q }_r$ , such that $F(x)=bx-qxq^{-1}c$ , for all $x\in \mathcal{Q }_r$ . Moreover there exists $\gamma \in \mathcal{C }$ such that $\mathcal{I }(q^{-1}c-\gamma )=(0)$ and $b-\gamma q \in \mathcal{C }$ ; (2) $\alpha $ is an $X$ -outer automorphism of $\mathcal{R }$ and there exist $c \in \mathcal{Q }_r, \lambda \in \mathcal{C }$ , such that $F(x)=\lambda x-\alpha (x)c$ , for all $x\in \mathcal{Q }_r$ , with $\alpha (\mathcal{I })c=0$ .  相似文献   

11.
We propose a first-order augmented Lagrangian algorithm (FALC) to solve the composite norm minimization problem $$\begin{aligned} \begin{array}{ll} \min \limits _{X\in \mathbb{R }^{m\times n}}&\mu _1\Vert \sigma (\mathcal{F }(X)-G)\Vert _\alpha +\mu _2\Vert \mathcal{C }(X)-d\Vert _\beta ,\\ \text{ subject} \text{ to}&\mathcal{A }(X)-b\in \mathcal{Q }, \end{array} \end{aligned}$$ where $\sigma (X)$ denotes the vector of singular values of $X \in \mathbb{R }^{m\times n}$ , the matrix norm $\Vert \sigma (X)\Vert _{\alpha }$ denotes either the Frobenius, the nuclear, or the $\ell _2$ -operator norm of $X$ , the vector norm $\Vert .\Vert _{\beta }$ denotes either the $\ell _1$ -norm, $\ell _2$ -norm or the $\ell _{\infty }$ -norm; $\mathcal{Q }$ is a closed convex set and $\mathcal{A }(.)$ , $\mathcal{C }(.)$ , $\mathcal{F }(.)$ are linear operators from $\mathbb{R }^{m\times n}$ to vector spaces of appropriate dimensions. Basis pursuit, matrix completion, robust principal component pursuit (PCP), and stable PCP problems are all special cases of the composite norm minimization problem. Thus, FALC is able to solve all these problems in a unified manner. We show that any limit point of FALC iterate sequence is an optimal solution of the composite norm minimization problem. We also show that for all $\epsilon >0$ , the FALC iterates are $\epsilon $ -feasible and $\epsilon $ -optimal after $\mathcal{O }(\log (\epsilon ^{-1}))$ iterations, which require $\mathcal{O }(\epsilon ^{-1})$ constrained shrinkage operations and Euclidean projection onto the set $\mathcal{Q }$ . Surprisingly, on the problem sets we tested, FALC required only $\mathcal{O }(\log (\epsilon ^{-1}))$ constrained shrinkage, instead of the $\mathcal{O }(\epsilon ^{-1})$ worst case bound, to compute an $\epsilon $ -feasible and $\epsilon $ -optimal solution. To best of our knowledge, FALC is the first algorithm with a known complexity bound that solves the stable PCP problem.  相似文献   

12.
We consider the (pure) braid groups $B_{n}(M)$ and $P_{n}(M)$ , where $M$ is the $2$ -sphere $\mathbb S ^{2}$ or the real projective plane $\mathbb R P^2$ . We determine the minimal cardinality of (normal) generating sets $X$ of these groups, first when there is no restriction on $X$ , and secondly when $X$ consists of elements of finite order. This improves on results of Berrick and Matthey in the case of $\mathbb S ^{2}$ , and extends them in the case of $\mathbb R P^2$ . We begin by recalling the situation for the Artin braid groups ( $M=\mathbb{D }^{2}$ ). As applications of our results, we answer the corresponding questions for the associated mapping class groups, and we show that for $M=\mathbb S ^{2}$ or $\mathbb R P^2$ , the induced action of $B_n(M)$ on $H_3(\widetilde{F_n(M)};\mathbb{Z })$ is trivial, $F_{n}(M)$ being the $n^\mathrm{th}$ configuration space of $M$ .  相似文献   

13.
Let $\mathbb{K }$ be a field of characteristic zero. We describe an algorithm which requires a homogeneous polynomial $F$ of degree three in $\mathbb{K }[x_{0},x_1,x_{2},x_{3}]$ and a zero ${\mathbf{a }}$ of $F$ in $\mathbb{P }^{3}_{\mathbb{K }}$ and ensures a linear Pfaffian representation of $\text{ V}(F)$ with entries in $\mathbb{K }[x_{0},x_{1},x_{2},x_{3}]$ , under mild assumptions on $F$ and ${\mathbf{a }}$ . We use this result to give an explicit construction of (and to prove the existence of) a linear Pfaffian representation of $\text{ V}(F)$ , with entries in $\mathbb{K }^{\prime }[x_{0},x_{1},x_{2},x_{3}]$ , being $\mathbb{K }^{\prime }$ an algebraic extension of $\mathbb{K }$ of degree at most six. An explicit example of such a construction is given.  相似文献   

14.
We study the structure of a metric n-Lie algebra G over the complex field C. Let G = SR be the Levi decomposition, where R is the radical of G and S is a strong semisimple subalgebra of G. Denote by m(G) the number of all minimal ideals of an indecomposable metric n-Lie algebra and R ⊥ the orthogonal complement of R. We obtain the following results. As S-modules, R ⊥ is isomorphic to the dual module of G/R. The dimension of the vector space spanned by all nondegenerate invariant symmetric bilinear forms on G is equal to that of the vector space of certain linear transformations on G; this dimension is greater than or equal to m(G) + 1. The centralizer of R in G is equal to the sum of all minimal ideals; it is the direct sum of R ⊥ and the center of G. Finally, G has no strong semisimple ideals if and only if R⊥■R.  相似文献   

15.
16.
Let $G$ denote a closed, connected, self-adjoint, noncompact subgroup of $GL(n,\mathbb R )$ , and let $d_{R}$ and $d_{L}$ denote respectively the right and left invariant Riemannian metrics defined by the canonical inner product on $M(n,\mathbb R ) = T_{I} GL(n,\mathbb R )$ . Let $v$ be a nonzero vector of $\mathbb R ^{n}$ such that the orbit $G(v)$ is unbounded in $\mathbb R ^{n}$ . Then the function $g \rightarrow d_{R}(g, G_{v})$ is unbounded, where $G_{v} = \{g \in G : g(v) = v \}$ , and we obtain algebraically defined upper and lower bounds $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ for the asymptotic behavior of the function $\frac{log|g(v)|}{d_{R}(g, G_{v})}$ as $d_{R}(g, G_{v}) \rightarrow \infty $ . The upper bound $\lambda ^{+}(v)$ is at most 1. The orbit $G(v)$ is closed in $\mathbb R ^{n} \Leftrightarrow \lambda ^{-}(w)$ is positive for some w $\in G(v)$ . If $G_{v}$ is compact, then $g \rightarrow |d_{R}(g,I) - d_{L}(g,I)|$ is uniformly bounded in $G$ , and the exponents $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ are sharp upper and lower asymptotic bounds for the functions $\frac{log|g(v)|}{d_{R}(g,I)}$ and $\frac{log|g(v)|}{d_{L}(g,I)}$ as $d_{R}(g,I) \rightarrow \infty $ or as $d_{L}(g,I) \rightarrow \infty $ . However, we show by example that if $G_{v}$ is noncompact, then there need not exist asymptotic upper and lower bounds for the function $\frac{log|g(v)|}{d_{L}(g, G_{v})}$ as $d_{L}(g, G_{v}) \rightarrow \infty $ . The results apply to representations of noncompact semisimple Lie groups $G$ on finite dimensional real vector spaces. We compute $\lambda ^{+}$ and $\lambda ^{-}$ for the irreducible, real representations of $SL(2,\mathbb R )$ , and we show that if the dimension of the $SL(2,\mathbb R )$ -module $V$ is odd, then $\lambda ^{+} = \lambda ^{-}$ on a nonempty open subset of $V$ . We show that the function $\lambda ^{-}$ is $K$ -invariant, where $K = O(n,\mathbb R ) \cap G$ . We do not know if $\lambda ^{-}$ is $G$ -invariant.  相似文献   

17.
Given a eigenvalue $\mu _{0m}^2$ of $-\Delta $ in the unit ball $B_1$ , with Neumann boundary conditions, we prove that there exists a class $\mathcal{D}$ of $C^{0,1}$ -domains, depending on $\mu _{0m} $ , such that if $u$ is a no trivial solution to the following problem $ \Delta u+\mu u=0$ in $\Omega , u=0$ on $\partial \Omega $ , and $ \int \nolimits _{\partial \Omega }\partial _{\mathbf{n}}u=0$ , with $\Omega \in \mathcal{D}$ , and $\mu =\mu _{0m}^2+o(1)$ , then $\Omega $ is a ball. Here $\mu $ is a eigenvalue of $-\Delta $ in $\Omega $ , with Neumann boundary conditions.  相似文献   

18.
Denote by ${\mathcal{C}\ell_{p,q}}$ the Clifford algebra on the real vector space ${\mathbb{R}^{p,q}}$ . This paper gives a unified tensor product expression of ${\mathcal{C}\ell_{p,q}}$ by using the center of ${\mathcal{C}\ell_{p,q}}$ . The main result states that for nonnegative integers p, q, ${\mathcal{C}\ell_{p,q} \simeq \otimes^{\kappa-\delta}\mathcal{C}_{1,1} \otimes Cen(\mathcal{C}\ell_{p,q}) \otimes^{\delta} \mathcal{C}\ell_{0,2},}$ where ${p + q \equiv \varepsilon}$ mod 2, ${\kappa = ((p + q) - \varepsilon)/2, p - |q - \varepsilon| \equiv i}$ mod 8 and ${\delta = \lfloor i / 4 \rfloor}$ .  相似文献   

19.
Let $\kappa \ge 6$ be an even integer, $M$ an odd square-free integer, and $f \in S_{2\kappa -2}(\Gamma _0(M))$ a newform. We prove that under some reasonable assumptions that half of the $\lambda $ -part of the Bloch–Kato conjecture for the near central critical value $L(\kappa ,f)$ is true. We do this by bounding the $\ell $ -valuation of the order of the appropriate Bloch–Kato Selmer group below by the $\ell $ -valuation of algebraic part of $L(\kappa ,f)$ . We prove this by constructing a congruence between the Saito–Kurokawa lift of $f$ and a cuspidal Siegel modular form.  相似文献   

20.
Let $\mathfrak{g }$ be a complex, semisimple Lie algebra. Drinfeld showed that the quantum loop algebra $U_\hbar (L\mathfrak g )$ of $\mathfrak{g }$ degenerates to the Yangian ${Y_\hbar (\mathfrak g )}$ . We strengthen this result by constructing an explicit algebra homomorphism $\Phi $ from $U_\hbar (L\mathfrak g )$ to the completion of ${Y_\hbar (\mathfrak g )}$ with respect to its grading. We show moreover that $\Phi $ becomes an isomorphism when ${U_\hbar (L\mathfrak g )}$ is completed with respect to its evaluation ideal. We construct a similar homomorphism for $\mathfrak{g }=\mathfrak{gl }_n$ and show that it intertwines the actions of $U_\hbar (L\mathfrak gl _{n})$ and $Y_\hbar (\mathfrak gl _{n})$ on the equivariant $K$ -theory and cohomology of the variety of $n$ -step flags in ${\mathbb{C }}^d$ constructed by Ginzburg–Vasserot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号