首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nanobelt formation of magnesium hydroxide sulfate hydrate (MHSH) via a soft chemistry approach using carbonate salt and magnesium sulfate as reactants was successfully demonstrated. X-ray diffraction (XRD), energy dispersion X-ray spectra (EDS), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis revealed that the MHSH nanobelts possessed a thin belt structure (approximately 50 nm in thickness) and a rectangular cross profile (approximately 200 nm in width). The MHSH nanobelts suffered decomposition under electron beam irradiation during TEM observation and formed MgO with the pristine nanobelt morphology preserved. The formation process of the MHSH nanobelts was studied by tracking the morphology of the MHSH nanobelts during the reaction. A possible chemical reaction mechanism is proposed.  相似文献   

2.
A facile and versatile solution‐based approach was developed to prepare semiconductor metal oxide nanobelt‐conducting organic polymer core‐shell nanocomposites. Well‐defined nanobelts of several types of oxide nanobelts were combined with conducting polymer [polypyrrole (PPy) and polyaniline (PANi)] via in situ polymerization in aqueous solution to obtain a new type of inorganic–organic composite nanostructure. Samples were characterized by using X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, electron energy loss spectra, high‐resolution transmission electron microscopy, and ultraviolet–visible techniques. Electron energy loss spectra revealed the existence of C?C and C? N bonds in coating layers to prove the encapsulation of PPy or PANi. The red‐shift of absorption band at high‐energy was observed for PPy‐encapsulated composites via ultraviolet–visible spectroscopy, and significant absorption band shifts were also encountered to PANi‐encapsulated composites, which suggest possibilities of band‐gap tuning of such metal oxide‐conducting polymer composites to be applied especially in solar cell devices. However, the sacrifice of nanobelts‐core led to hollow structures of PPy and PANi, which expands the synthetic strategies to prepare conducting polymer nanotubes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2892–2900, 2005  相似文献   

3.
In this study, zinc oxide (ZnO) nanorod were successfully prepared at different growth times (15, 30 and 60 min) using the microwave irradiation method. The ZnO nanorods were simply synthesized at a low temperature (90 °C) with low power microwave assisted heating (about 100 W) and a subsequent ageing process. The synthesized nanorod were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and Ultraviolet–Visible spectroscopy (UV–Vis). The FESEM images showed nanorods with diameter ranging between 50 and 150 nm, and length of 150–550 nm. The XRD results indicate that ZnO nanorods of different time of growth exhibits pure wurtzite structure with lattice parameters of 3.2568 and 5.2125 Å. UV–Vis characterization showed that energy gap decreases with increase in time. The result also shows that growth of ZnO at 60 min produces an energy band gap of 3.15 eV. In general, the results of the study confirm that the microwave irradiation method is a promising low temperature, cheap and fast method for the production of ZnO nanostructures.  相似文献   

4.
"Using magnesium nitrate as Mg source and regularly packed polymethyl methacrylate (PMMA) spheres were synthesized via a combined strategy of emulsifier-free emulsion polymerization and water floating technique as hard template, we fabricated ordered nanoporous magnesium oxide. The synthesized PMMA and MgO samples were characterized by N2 adsorption-desorption, X-ray diffraction, high-resolution scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. It was observed that the synthesized PMMA spheres possessed a uniform diameter of approximately 284 nm and were in a highly ordered array, and the MgO generated by using the PMMA-templating method exhibited polycrystallinity with three-dimensionally ordered pores. BET surface area of the synthesized MgO sample is 100.7 m2/g, pore volume is 0.46 cm3/g, wall thickness is 4-24 nm, and pore sizes are in the range of 10-120 nm. Such a 3D high-surface-area nanoporous strongly basic MgO is useful in the applications of catalyst supports and acidic gas adsorbents."  相似文献   

5.
Porous microspheres of magnesium oxide were synthesized by calcination of precursor obtained via hydrothermal method. A sample of microsphere was characterized by transmission electron microscopy, scanning electron microscopy–energy dispersion spectroscopy, X-ray diffraction, thermogravimetric analysis, N2 adsorption–desorption isotherms, and BET surface area. The average pore size and surface area of the microsphere were found to be 9.0 nm and 83.1 m2 g?1, respectively. The performance of sorbent was investigated in a continuous adsorption system. Iodine adsorption on sorbent was studied by varying temperature of adsorption column, sorbent calcination temperature and initial concentration of iodine. The capacity of sorbent increased by ~25 % when calcination temperature was raised from 350 to 500 °C. The maximum iodine adsorption capacity of sorbent was found to be 196 mg g?1 using Langmuir isotherm. These results indicate the microspherical form of MgO to be effective sorbent to capture iodine vapor from off-gas stream.  相似文献   

6.
Hybrid nanocomposite films of magnesium oxide (MgO) in fluorinated polyimide (PI) from 4, 4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 4, 4′-Diaminodiphenyl ether (ODA) have been successfully fabricated via an in situ sol–gel polymerization technique. The MgO content in hybrid films was varied from 0 to 5 wt%. The hybrid films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet–visible (UV–Vis) spectroscopy and thermal gravimetric analyses (TGA). The results of FTIR, XRD and FESEM showed that the MgO nanoparticles were well dispersed in the polymer matrix due to the coordination between the carbonyl group of polymers and Mg atom, and the as-prepared hybrid films exhibited excellent optical transparency in the visible region and good UV-shielding properties in the UV region. Although the thermal stability of the hybrid films is slight inferior to pure PI, it is still good for the practical application below the temperature of 300 °C.  相似文献   

7.
硼酸镁纳米带的制备、结构和生长机理   总被引:8,自引:0,他引:8  
以晶态B和纳米MgO粉末为原料, 在1100 ℃含水的气氛下反应制备了新型准一维纳米材料硼酸镁纳米带. 采用多种表征方法, 如X射线衍射(XRD), 扫描电镜(SEM), 透射电镜(TEM), 能量色散谱仪(EDS)和傅立叶红外(FT-IR)等, 研究了产物的形貌和结构. 结果表明, 除了部分附着的Mg2B2O5颗粒外, 产物主要为单晶的Mg3B2O6纳米带. 其宽度在100~200 nm, 长度达到几十微米, 生长方向大致为[010]方向. 简要讨论了硼酸镁纳米带的生长机理和反应温度对产物的影响.  相似文献   

8.
A study was conducted concerning the preparation and application of a novel synthetic oxide adsorbent of MgO-SiO2 type. The material was prepared via a sol–gel route, utilizing magnesium ethoxide and tetraethoxysilane as precursors of magnesium oxide and silica respectively, and ammonia as a catalyst. The powder was comprehensively analyzed with regard to chemical composition (EDS method), crystalline structure, morphology, characteristic functional groups, electrokinetic stability and porous structure parameters (BET and BJH models). The synthesized oxide adsorbent is amorphous, with irregularly shaped particles, a relatively large surface area of 612 m2/g, and negative surface charge over almost the whole pH range. Comprehensive adsorption studies were performed to investigate the adsorption of Cd(II) and Pb(II) ions on the MgO–SiO2 oxide adsorbent, including evaluation of adsorption kinetics and isotherms, the effect of pH, contact time and mass of adsorbent. It was shown that irrespective of the conditions of the adsorption process, the synthesized MgO–SiO2 adsorbent exhibits slightly better affinity to lead(II) than to cadmium(II) ions (sorption capacity of 102.02 mg(Pb2+)/g and 94.05 mg(Cd2+)/g). The optimal time for removal of the analyzed metal ions was 60 min, although adsorption reached equilibrium within 10 min for Pb(II) and within 15 min for Cd(II) ions, which was found to fit well with a type 1 pseudo-second-order kinetic model. Additionally, adsorption efficiency was affected by the pH of the reaction system—better results were obtained for pH ≥7 irrespective of the type of metal ion.  相似文献   

9.
Tubular tetrapod magnesium oxide (tt-MgO) can be synthesized by thermal evaporation of Mg metal powder with a pre-grown tetrapod ZnO template. The morphology and structure of the tt-MgO were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. A composite prepared from tt-MgO, nafion and horseradish peroxidase was employed to modify a gold electrode to result in an electrochemical biosensor for hydrogen peroxide that displays excellent sensitivity and rapid response in the presence of hydroquinone as a mediator. Its sensitivity is 335.4 μA mM-1 cm-2, its response is linear in the range from 1.0 to 450 μM, and the detection limit is 0.3 μM. These results demonstrate that tt-MgO provides a promising material for the designs of biosensors.
Figure
Tubular tetrapod magnesium oxide (tt-MgO) can be synthesized by thermal evaporation of Mg metal powder with a pre-grown tetrapod ZnO template. A composite prepared from tt-MgO, nafion and horseradish peroxidase was employed to modify a gold electrode to result in an electrochemical biosensor for hydrogen peroxide that displays excellent sensitivity and rapid response in the presence of hydroquinone as a mediator.  相似文献   

10.
A simple low temperature hydrothermal method was found to yield Na0.28V2O5 nanobelts after two days at 130 °C in acidic medium (H2SO4) without using any surfactant. The obtained products were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), and Raman spectroscopy. Their morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Additionally, their electrochemical behavior in a lithium battery was investigated. The XRD pattern shows that the product is composed of monoclinic Na0.28V2O5 nanobelts. From the FTIR spectrum, the band centered at 961 cm–1 is assigned to V=O stretching vibration, which is sensitive to intercalation and suggests that Na+ ions are inserted between the vanadium oxide layers. SEM/TEM analyses reveal that the products consist of a large quantity of nanobelts which have a thickness of 60–150 nm and a length of several tens of micrometers. The electrochemical results show that the nanobelts exhibit an initial discharge specific capacity of 390 mAh · g–1, and its stabilized capacity still remained around 200 mAh · g–1 after the 18th cycle.  相似文献   

11.
Zinc oxide nano-wires (ZnO NWs) are synthesized reproducibly with high yield via a low temperature hydrothermal technique. The influence of the growth duration time, growth temperature, zinc precursor and base concentration of Na2CO3 on the morphology of NWs is investigated. The growth products are characterised using scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). SEM analysis shows that the optimum growth temperature is 140 °C and finds that length and diameter of ZnO NWs have a relationship with growth duration time and base concentrations of Na2CO3. In addition, it is reported that a high (~90%) yield of ZnO NWs can be synthesised via using any of three different precursors: zinc chloride, zinc acetate and zinc nitrate. TEM and XRD results indicate the high purity and the single crystalline nature of the ZnO NWs. XPS confirms the absence of sodium contaminants on the surface and indicates a near flat band surface condition. PL shows a large visible band in the yellow part of the spectrum, and a small exciton emission peak, indicating a large defect concentration, which is reduced after annealing in air.  相似文献   

12.
Three-dimensionally ordered macroporous (3DOM) magnesium (Mg) oxide (MgO), MgSO4, calcium (Ca) carbonate (CaCO3), and strontium (Sr) carbonate (SrCO3) were prepared using a colloidal crystal of polymer spheres as a template. Ethanol or ethanol-water solution of metal salts (acetate or nitrate) and citric acid was infiltrated into the void of the colloidal crystal template of a monodispersed poly(methyl methacrylate) (PMMA) sphere. Heating of this PMMA-metal salt-citric acid composite produced the desired well-ordered 3DOM materials with a high pore fraction, which was confirmed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ultraviolet-visible (UV-vis) diffuse reflectance spectra. The presence of citric acid is crucial for production of the 3DOM structures. Reaction of citric acid with metal salt produces metal citrate solid in the void of PMMA spheres, which is necessary to maintain the 3DOM structure during the calcination process. 3DOM CaCO3 shows opalescent colors because of it's photonic stop band properties.  相似文献   

13.
Yttrium-group heavy rare-earth sesquioxide (RE(2)O(3), RE=Y, Dy, Ho, Er) nanobelts were successfully fabricated by thermolysis of solid RE(NO(3))(3)x H(2)O in a dodecylamine/1-octadecene mixed solvent system. The synthetic principle is based on separating the nucleation and growth processes by utilizing the poor solubility of RE(NO(3))(3)chi H(2)O in the solvent mixture and the heat-transportation difference between the liquid and solid. By using dodecylamine, RE(2)O(3) nanobelts can be readily obtained. X-ray diffraction (XRD) analysis shows that the synthesized RE(2)O(3) nanobelts are body-centered cubic and crystalline. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), selective-area electron diffraction (SAED), and high-resolution transmission electron microscopy (HR-TEM) demonstrate that the synthesized RE(2)O(3) compounds possess regular geometric structure (beltlike) with perfect crystallinity. Preliminary experimental results prove that the dodecylamine plays a key role in the formation of RE(2)O(3) nanobelts and cannot be replaced by other surfactants. Furthermore, this method can be extended to the synthesis of RE(2)O(3) nanobelt/metal nanocrystal nanocomposites and ABO(3) (A=Y, Dy, Ho, Er; B=Al) and A(3)B(5)O(12) (A=Y, Dy, Ho, Er; B=Al)-type ternary oxide nanobelts, using mixed-metal nitrate salts in the correct stoichiometry instead of single rare-earth nitrates.  相似文献   

14.
A novel and efficient synthesis of cuprous oxide (Cu2O) nano-octahedron was successfully prepared via a green chemie douce approach utilized a microwave hydrothermal route at low growth temperature without the presence of any surfactant. The crystalline structure of the Cu2O was characterized by several techniques like X-ray powder diffraction (XRD), Fourier transformation spectroscopy, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM). XRD results indicate that the size of Cu2O nano—octahedron is 71 nm which is calculated with the help of Scherer equation, as supported by FESEM and TEM. The formation mechanism of the Cu2O octahedral was discussed. Optical absorption spectra reveal that the optical band gap of the Cu2O is controlled by quantum confinement effect. The obtained optical energy gap value E g of Cu2O octahedron was about 2.43 eV. The photoluminescence emission spectra of the Cu2O nano-octahedrons exhibit two emission peaks located at 342 and 365 nm due to the quantum effect. It is evaluated that the green chemie douce approach is a cheap and fast to synthesize Cu2O nano-octahedrons and could be potentially extended to other inorganic systems for industrial production.  相似文献   

15.
Spinel cobalt manganese oxide nano-composites were grown on nanosheets using acetate precursors in mono-ethylene glycol. Crystal structures and morphologies of nano-composites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and energy dispersive X-ray spectroscopy to characterize the element composition. Fourier transform infrared spectroscopy was used for structural characterization and UV–Vis diffuse reflectance spectra (UV–Vis DRS) for optical properties. XRD results showed tetragonal spinel cobalt manganese oxide (Co,Mn)(Co,Mn)2O4 and cubic spinel cobalt manganese oxide MnCo2O4.5 structural phases. The crystallite size calculated by the Scherrer’s equation was 17 nm. The morphological studies displayed the existence of 40–63 nm nano-powders grown on nanosheets with a good degree of crystallization. Optical properties of cobalt manganese oxide nano-composites exhibit absorbance edge, and the band gap calculated from UV–Vis DRS results was 1.78 eV. FTIR spectra indicated that hydroxyl and oxide groups were major active sites. The absorption bands observed at 656 and 568 cm?1 are related to stretching vibrations of Mn–O and Co–O, respectively. The photocatalytic activities of nano-composites for photocatalytic mineralization of Acid Black 1 textile dye showed an outstanding performance. Photocatalytic process yielded 91% total organic carbon removals within 2.5 h of irradiation. The enhanced photocatalytic activity was attributed to better charge separation of the photo-generated electron–hole pairs in nano-composite.  相似文献   

16.
The paper presents investigations of changes in optical absorption and photo luminescence spectra of magnesium oxide, and natural and synthetic magnesium aluminium spinel related with the content of transition metal ions (Cr, Fe, Mn) and the irradiation with fast neutrons. Six synthetic single magnesium aluminium spinel crystals with different stoichiometry (MgO·nAl2O3), five natural crystals from Ural and Pamir deposits, and seven MgO crystals were studied. Micro impurities (Cr, Fe, and Mn) and macro component (Mg, Al) quantities have been determined using the instrumental neutron activation analysis technique. Concentrations of impurities in different spinels were found in following ranges: for Cr—1 × 10?4 to 8 × 10?2 %, for Mn—2 × 10?5 to 23 %, for Fe—1 × 10?4 to 1.2 %. Three ranges of luminescence: 380–460, 650–850 and 850–1,050 nm, were established in the most part of the investigated MgO samples. Analysis shows that the intensity of emission in each of these regions is strongly dependent on the concentration of transition metal ions. Great deviation from the stoichiometry of the irradiated MgO·2.8Al2O3 crystal leads to the local structure of α-Al2O3 formation around Cr3+ ions. The orange emission is attributed to Mn2+ in octahedral coordination, it can be assumed that the band at 570 nm is belonging to the complex centre “Mn2+–F+ (or F centre)”.  相似文献   

17.
Porous zirconia particles were synthesized through a low-temperature hydrothermal synthesis process. Under hydrothermal conditions, water can control the direction of crystal growth, morphology, particle size, and size distribution because thermodynamics and transport properties can be controlled by pressure and temperature. In a batch process, the hydrothermal synthesis was conducted at 200–300 °C and 30 MPa with an SUS-304 tube as the reactor. At the same reaction pressure, experiments were also performed for a flow process with temperatures of 180–200 °C. The synthesized products were calcined and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results showed that the macroporous zirconia particles that were formed had pore diameters around 419 nm. The XRD pattern indicated that the products were composed of zirconium oxide particles with monoclinic, tetragonal, and cubic structures.  相似文献   

18.
This study focuses on the preparation and characterization of nickel oxide nanoparticles from nickel(II) Schiff base complexes as new precursors. At first nickel(II) complexes [Ni(salophen)] and [Ni(Me-salophen)] were synthesized and characterized by elemental analyses and FT-IR spectroscopy. Then NiO nanoparticles were prepared by solid-state thermal decomposition at 550 ºC for 3.5 h. The FT-IR spectrum confirmed the composition of products. The crystalline structures and morphology of products were studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD results revealed that the obtained products were nickel oxide. SEM and TEM images demonstrated that the NiO nanoparticles have uniform shape with size between 35 and 70 nm.  相似文献   

19.
Sol–gel method was employed to prepare Ni–Co/Al2O3–MgO–ZrO2 nanocatalyst with various loadings of MgO (5, 10 and 25 wt%) for dry reforming of methane. The physiochemical properties of nanocatalysts were characterized by XRD, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), BET and fourier transform infrared spectroscopy (FTIR) analysis. Evaluation of catalytic performance was conducted in atmospheric pressure, stoichiometric feed ratio, GHSV of 24 l/gcat h and temperature range from 550 to 850 °C. XRD patterns represented that as MgO content increases, the amorphous behavior slightly intensifies and also dispersion of active phase improves which probably caused by strong metal–support interaction. Furthermore, FESEM analysis confirmed that all of prepared samples are nano scale. EDX results besides verifying the declared claim about the dispersion of samples proved the presence and detected the position of the various elements. In addition, based on the FESEM analysis, narrow particle size distribution, uniform morphology and dispersion without agglomeration were found for Ni–Co/Al2O3–MgO–ZrO2 with 25 wt% MgO. Moreover, smallest average particle size 11.6 nm (close to the critical size for Ni–Co catalyst to avoid carbon formation) was obtained for this nanocatalyst. Also, according to the BET analysis, MgO rich nanocatalyst represented the higher surface area than the other ones. Based on the excellent characterizations, Ni–Co/Al2O3–MgO–ZrO2 with 25 wt% MgO exhibited the best products yield through all of the investigated temperature e.g. H2 = 96.9 % and CO = 97.1 % at 850 °C. Furthermore, this nanocatalyst demonstrated the stable yield with H2/CO close to unit during 1,440 min stability test.  相似文献   

20.
A process was proposed for the synthesis of ZnO/MgO nanocomposites from alcoholic solutions by means or the consecutive precipitation of coprecipitation of alcoholic solutions of zinc acetate and magnesium with an alkali solution followed by annealing in the range 400–500°C. X-ray powder diffraction showed crystalline ZnO and MgO phases in the resulting composite. Zinc oxide particle sizes in the composite with magnesium oxide were determined by transmission electron microscopy and from X-ray diffraction peak broadening. The zinc oxide nanoparticle size was weakly affected by the molar ratio of zinc to magnesium and the concentration of the precipitated component. The ZnO exciton peak in cathodoluminescence spectra for nanocomposites synthesized at low temperatures (400 and 500°C) shifted toward the UV. At ≥600°C or higher, Mg1 ? x Zn x O solid solution was generated, as evidenced by X-ray diffraction and cathodoluminescence data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号